
Camera grid extrinsic self-calibration

Tim Lenertz

July 28, 2017

Contents

1 Introduction 4

1.1 Requirements . 4

2 Method 5

2.1 Overview . 5
2.2 Preliminaries . 5
2.3 Image correspondences . 6

2.3.1 Choosing feature points . 6
2.3.2 Optical �ow tracking . 7
2.3.3 Filtering features . 9
2.3.4 Reference views . 9
2.3.5 Feature point depths . 10
2.3.6 Feature point weights . 10

2.4 Observations . 11
2.4.1 Rotation . 11
2.4.2 Depth . 12

2.5 Camera rotation . 13
2.5.1 Optical �ow slopes . 13

2.5.1.1 Flow equation . 13
2.5.1.2 Horizontal and vertical camera movement 14
2.5.1.3 Slopes . 14
2.5.1.4 Samples from image correspondences 15
2.5.1.5 Estimating camera rotation . 15
2.5.1.6 Accuracy . 15

2.5.2 Feature point depths . 15
2.6 Straight depths . 17

2.6.1 Aggregating feature point depths . 17
2.6.2 Depth from disparity . 17

2.6.2.1 Pairwise scale ratios . 17
2.6.2.2 Global scale ratios . 18
2.6.2.3 Depths . 18
2.6.2.4 Results . 20

2.7 Camera positions . 21
2.7.1 Relative camera positions . 21
2.7.2 Stitching . 22
2.7.3 Redistributing image correspondences . 22
2.7.4 Final camera extrinsics . 26

3 Usage 27

3.1 Preliminaries . 27

2

3.2 Image correspondences . 27
3.2.1 Reference grid . 27
3.2.2 Undistort images (if applicable) . 27
3.2.3 Optical �ow features . 28
3.2.4 Optical �ow correspondences . 28
3.2.5 Merge image correspondences . 28
3.2.6 Visualizing image correspondences . 28
3.2.7 Feature point depths (if applicable) . 29
3.2.8 Filtering image correspondences . 29
3.2.9 Undistort image correspondences (if applicable) 29

3.3 Rotation estimation . 30
3.3.1 Measuring optical �ow slopes . 30
3.3.2 Visualizing optical �ow slopes . 30
3.3.3 Optimizing optical �ow slopes . 30
3.3.4 Rotation from depths . 30

3.4 Straight depths . 30
3.4.1 Aggregate feature point depths . 30
3.4.2 Depth from disparity . 31

3.5 Camera positions . 31
3.5.1 Relative camera positions . 31
3.5.2 Stitching . 31
3.5.3 Visualization and export . 31

3

1 Introduction

This report describes the method used to calibrate the extrinsic camera parameters of the
3DLicorneA data sets. If is applicable for dense 2D data sets, where cameras are placed on a
more or less regular grid on a plane parallel to the scene. The optical �ow of tracked features,
and aggregated values from the depth maps, are used to compute the camera positions and
orientations. No calibration pattern needs to be present in the scene.

1.1 Requirements

To use the method, there are the following requirements:

� The intrinsic camera parameters are known. This is the camera matrix K and optionally
the distortion coe�cients. The method was used for the case where there is no distortion
(Kinect v2), but with additional steps it can be used with distorted images.

� The intrinsic camera parameters are the same for each image.

� There can be a depth map for all or some views. If not, the depth values for some features
(at least one) needs to be speci�ed manually.

� The camera centers are arranged on an approximately regular 2D grid on a frontal plane
P . The distance between adjacent camera positions (in x and y direction) is su�ciently
small that feature points can be tracked using optical �ow.

� It is assumed that camera centers lie always exactly on the plane. That is, they never
more towards or back from the scene.

� The camera is facing approximately perpendicular to the plane P , towards the scene.
There can be a small rotation R of the camera relative to P . It is estimated as part of the
calibration. The yaw, pitch and roll angles should be smaller than 5°. It is assumed that
this rotation remains constant for all views.

� There can be some missing images and depth maps in the data set.

� It is not necessary that the tracked feature points remain visible across the whole range
of views. Calibration can be done on subsets of the camera positions, and then stitched
together.

4

2 Method

The calibration is done in four steps: (1) Compute image correspondences using feature tracking.
(2) Estimate the camera rotation R. (3) Estimate straight depths of the tracked features, i.e.
their distance to P . (4) Deduce camera positions.
The method calculates one global rotation matrix R, and for each view v, a 2D vector ~cv of

the camera center position on the plane P . From this it then obtains the extrinsic matrices Rt.

2.1 Overview

First the algorithm selects several feature points on one on multiple reference views. Using
optical �ow, it then tracks the position of the those features on the other views.
With the pin-hole camera model, it is be possible to calculate the camera position on P directly

from a feature point's positions on di�erent views - when the camera is pointing perpendicular
to P , and the feature's distance to P is known. So the algorithm �rst needs to estimate R, and
the distances of the features.
To calculate R, two methods are can be used. One uses a non-linear model which estimates

R only from the slope of the lines that the tracked features make when the camera moves
horizontally and vertically, without knowledge of the features' depths. The other method uses
the depths of the features on the di�erent views. Both estimate a full 3D rotation matrix.
The orthogonal distance of a feature to P will be called its straight depth. Knowing R (and

K), it can now be calculated from the feature points' depths in each view's depth map. If depth
maps are not available, it is also possible to �x only the depth of one or more features, and
deduce the rest from the relative scales of the di�erent feature's disparities. These two methods
are available.
Using R and the straight depth of each feature, the algorithm now estimates the set of camera

positions on P , one for each feature. They are averaged to get one camera position for each
view.

2.2 Preliminaries

The 2D dataset consists of several views. A view v consists of an image, and optionally a depth
map, taken from one camera position. The views are enumerated with two integer indices v(x, y).
Views with the same x index are (approximately) aligned vertically, views with the same y index
horizontally.
The goal is to estimate the position and orientation of the camera for each view, i.e. to �nd

the extrinsic camera matrices Rtv.
If depth maps are used, they need to be in the same coordinate systems as the images. For

each image pixel (ix, iy), the value d of the same pixel in the depth map needs to indicate the
distance from the camera center to that object point, perpendicular to the camera image plane.
The camera matrices Rtv will be expressed in the same unit as these depths.

5

Figure 2.1: Chosen feature points

2.3 Image correspondences

First some features f are selected. They correspond to 3D points in the scene. This step aims to
�nd for each feature f , the set of feature points p(f, v) = (x, y, d, w), that is the pixel coordinates
x, y where the feature f is visible in each view v. This data is called the image correspondences.
A feature point optionally also contains its orthogonal depth d, and a weight w. When R 6= I,

the depths pf,∗ of the same feature for di�erent views will be di�erent.

2.3.1 Choosing feature points

Features are obtained by choosing feature points on a reference view. By default the center view
in the dataset is used as reference view.
But if the range of motion of the camera is large, or the �eld of view is small, many feature

points that are visible in the center view, will not be visible on the extremity views. For this
reason, it is also possible to select features on multiple reference views. The entire procedure
will then be done for each reference view independently, and in the end the obtained camera
positions are stitched together.
The chosen feature points need to be such that they are likely to remain stable when doing

feature tracking. It means that when one looks for a similar-looking nearby point on an adjacent
view, it is likely to be the same scene point. An example is shown on �gure 2.1.
The OpenCV function goodFeaturesToTrack is used. Also, the image is �rst subdivided into

4 or more rectangular regions, and the best chosen features from each region are taken.
The chosen features should be well distributed across the image, and have di�erent depths.

There should be about 300 or more features, considering that many will be �ltered out because
their optical �ow is unstable.

6

x

y

Figure 2.2: Optical �ow paths

2.3.2 Optical �ow tracking

Optical �ow feature tracking is always done on adjacent views, for example v(x, y) and v(x+1, y).
Then sequentially, it uses the corresponding feature points on v(x + 1, y) to estimate those for
v(x+ 2, y), and so on. So there is an error accumulation, which gets worse the longer the path
that the view indices take.
The acquisition system moves line-by-line. So it is physically guaranteed that for any v(x, y)

and v(x+ 1, y), the camera only moves by a small amount, whereas for v(x, y) and v(x, y + 1),
there can be a larger deviation. So it is better to take most optical �ow correspondences in x
direction.
The optical �ow algorithm moves over the (x, y) view indices as shown on �gure 2.2. The

center view (black circle) is the reference view. As each step moving from (x, y) to (x′, y′), for
each feature f , all the feature points p(f, v(x′, y′)) are computed from those of p(f, v(x, y)). If
no feature point p(f, v(x′, y′)) could be computed anymore, the algorithm stops for that line.
If the image for a view is missing, that view is skipped, and instead the correspondences are

taken from the second-previous view, as shown. It is important that no view is missing in the
column of the reference view, because then that entire line will be skipped.
The reference view is not one of the edges, but instead in the center, and the optical �ow steps

are done in all four directions. This minimizes the total path taken, and reduces the accumulated
error.
The maximal number of steps to be taken in x and in y direction, called outreach, can be set

to a maximal limit. Using a smaller outreach, and instead doing the calibration from multiple
reference views, and combining the results in the end, can produce better �nal results.
To compute the optical �ow, the OpenCV function calcOpticalFlowPyrLK is used. The

parameters can be adjusted. It can also be set to automatically generate multi-scale image
pyramids. Thay way larger images can be used.
Figures 2.3 are examples of good feature correspondences. The background image is a close-

up of a view image. The red dot is the feature point on this view. The other dots are the
corresponding feature points on the other views.

7

Figure 2.3: Good feature correspondences

Figure 2.4: Bad feature correspondences

8

2.3.3 Filtering features

The next step is to �lter the generated image correspondences. It is important, because incorrect
feature points can have a large impact on the �nal results. The optical �ow procedure tends to
generate a large number of bad correspondences. There is an algorithm to automatically �lter
out bad correspondences, but they should also be veri�ed by hand.
Figures 2.4 are examples of good feature correspondences. In the �rst example, the deviation

occurred because a foreground object with a curved border moved in front of the tracked feature.
In the second example, the pattern appears regular but the correspondence is still incorrect.
Deviations can also occur because of specular re�ections (for example on the metal sink), because
of badly chosen feature (such as on the furry objects), or because of the limited pixel resolution.
The �ltering algorithm removes all feature points for one a feature f entirely, if there are too

little feature points, or if the pattern deviates too much from a regular lattice.
Properly �ltering the correspondences is important: Having incorrect correspondences, and

having too little correspondences, both have a large impact on the �nal result. In practice, for
each view, there should remain about 100 features.

2.3.4 Reference views

As explained, it is possible to use multiple reference views. They must be chosen on a grid called
the the reference grid (or reference views grid).
Figure 2.5 shows how the reference views can be selected. The four colored dots are the

reference views. The x key and y key is the distance between reference view indices, in x and y
direction.

x outreach

x key

Figure 2.5: Reference views arrangement

The outreach indicates the maximal range of view indices around the reference view, for which
correspondences will be searched. In the �gure these regions are shown as the colored rectangles.
For the stitching to work, there must be some overlap in these rectangles, as shown by the yellow
regions in the �gure.
The overlap should be large enough so that there will remain many views with feature points

from two references, after the �ltering. The outreach should be kept relatively small, for two
reasons: (1) The maximal propagated error from the optical �ow feature tracking is larger if the
outreach is large. This also makes it more likely for entire features to be �ltered out, even though
a smaller portion of its feature points are good. (2) When camera positions are computed at the

9

end, the impact of the error in the camera rotation and in the feature depths, becomes much
larger for views that are further away from the reference view. (see later, in section 2.7)
For example an outreach of 80, and a key of 100 can be a good choice. It would leave an

overlap range of 60. Generally, the outreach should be small and the overlap large.
Given a horizontal/vertical outreach and key, the algorithm chooses the reference grid so that

there are no missing images on the columns of the reference views' x indices.

2.3.5 Feature point depths

If depth maps are available, they are used to attribute a depth value d to each feature point
p(f, v) = (x, y, d, w). The depth is read from the view's depth map, at pixel position (x, y).
However, features are often located on the border of foreground objects. Taking a single pixel

value in the depth map could incorrectly take the depth of the background, or an intermediary
value. Therefore the algorithm takes a small pixel window around (x, y), and retains the minimal
(i.e. closest to camera) value in it.

2.3.6 Feature point weights

Feature points p(f, v) can have a weight value. If many feature points are clustered together on
a small region of the image (for example a checkerboard), it is reasonable to given them a lower
weight, and to give a higher weight to more isolated feature points.
Especially for the rotation estimation from optical �ow slopes (see later), it is important that

all regions in the image are uniformly represented.
This is not implemented.

10

2.4 Observations

Looking at the image correspondences on �gures 2.3, it can be seen that the arrangement of the
feature points roughly corresponds to the (inverted) camera positions on P . (The vertical gap
on the second �gure is a result of the acquisition system: It did not take the y-step properly at
that height.)
The feature points for every feature f will be arranged in the same pattern, just at di�erent

places in the image, with di�erent scales (i.e. disparities), and with a distortion due to the
camera orientation R. The basic idea of this calibration method is to overlay the feature points
for several features, make their scale uniform, remove the rotation distortion, and take the
averages. From this the camera position is then derived.

2.4.1 Rotation

The rotation R (orientation of the camera relative to the plane P) distorts the feature points.
For �gure 2.6, a 1D optical �ow was taken, with the camera moving on a horizontal axis only.
The feature points were then overlaid, centered on one feature point, and given uniform scale.
The �gure shows these transformed feature points, one color for each feature. It can be seen
that they form lines with di�erent slopes. The scaling does not a�ect the slope. The di�erent
slopes are caused by the camera's rotation R. In the 2D case, it is possible to estimate R, from
these slopes alone. This is done in section 2.5.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 2.6: Overlayed feature points in 1D case

11

2.4.2 Depth

Another problem is that if more than two sets of feature points should be given a common scale,
one set of feature points would need to be chosen as reference. But this would amplify the error
in the correspondences of that particular feature. So it is better to calculate scaling factors in a
more global way. This is done with the straight depths, in section 2.6.

f

v1 v2

d2d1 sd

p(f,v2)

p(f,v1)

P

Figure 2.7: Di�ering feature point depths

Figure 2.8: Feature point depths as x index of view varies

Figure 2.7 shows how because of the rotation R, the feature points depths d1, d2 for one
feature f are not all equal. Figure 2.8 shows the feature point depths from one data set, of 7
di�erent features, as the x index of the view varies. Despite the noise, a clear linear increase
can be seen, with the same slope for each feature.
In the 2D case, these instead be parallel planes. In section 2.5.2, the yaw and pitch components

of the rotation R are estimated from this.
In section 2.6 all of these feature points depths are aggregated together, to calculate the

straight depth sdf of each feature, using R and the camera intrinsic matrix K.

12

2.5 Camera rotation

The next step is to determine the camera rotation R. This is the rotation of the cameras relative
to the plane P on which the camera centers are placed. It is a 3D rotation matrix, with 3 degrees
of freedom.
There are two methods to estimate R.
One is based only on the slopes of the image correspondences, and does not need depth maps.

It needs the cameras to be aligned on a regular grid. It seems to produce an accuracy of around
0.5° for the three rotation angles. It is described in the next section 2.5.1.
The other uses the di�ering depths of the feature points to estimate the rotation, by doing

a least squares plane �tting operation, followed by an adjustment of the roll rotation. It is
described in section 2.5.2. It seems to give better results.

2.5.1 Optical �ow slopes

2.5.1.1 Flow equation

The camera intrinsic matrix K projects points in the camera view space (vx, vy, vz), to pixel
positions on the image (ix, iy) in homogeneous coordinates, according to

w

ixiy
1

 =

fx 0 cx
0 fy cy
0 0 1

vxvy
vz

 (2.1)

ix = fx
vx
vz

+ cx iy = fy
vy
vz

+ cy (2.2)

vx =
vz
fx

(ix − cx) vy =
vz
fy

(iy − cy) (2.3)

As shown on �gure 2.7, the camera moves such that the camera center is on a plane P , and
the camera has a constant rotation R relative to P .
The world space coordinate system is set such that its z = 0 plane is P , and its origin is any

point ~O(0, 0, 0) ∈ P .
Let ~i(~O) be some point in the image of the camera when it is placed at O. Let ~v(~O) be the

same point in the camera's view space, calculated with formula 2.3, with a given value z = vz(~O).
Let ~w be the same point in world space. For any camera center position ~Q ∈ P , the relation is

~v(~Q) = R(~w + ~Q) (2.4)

To get from world space to view space, the coordinate system is �rst translated by ~Q (where
Qz = 0), then rotated by R. In particular,

~v(~O) = R~w (2.5)

hence
~v(~Q) = ~v(~O) +R ~Q (2.6)

Using formula 2.2, ~i(~Q) can now be calculated from this. So one has the function

�owR : 〈~i(~O), ~Q, z〉 7→~i(~Q) (2.7)

13

2.5.1.2 Horizontal and vertical camera movement

The following section will analyze how~i(~Q) evolves when ~Q moves on P . Most importantly, it is
shown that when ~Q moves horizontally or vertically on P , then the slope at which ~i(~Q) moves
on the image does not depend on z.

Let ~H = (ε, 0, 0) and ~V = (0, ε, 0). They represent a horizontal and vertical displacement
of the camera on P , by some magnitude ε.
Because of the transformation between cartesian and homogeneous coordinates in formulae 2.2

and 2.3, the function �owR cannot be expressed directly as a matrix equation. R is decomposed:

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (2.8)

To simplify the expressions, the coordinates of the chosen image point~i(~O) are simply denoted
(ix, iy). Also, z = vz(~O).

For the horizontal camera movement by ~H, one gets:

ix(~H) =
ixz + fxr11ε+ cxr31ε

z + r31ε
and iy(~H) =

iyz + fyr21ε+ cyr31ε

z + r31ε
(2.9)

And for the vertical camera movement by ~V , one gets:

ix(~V) =
ixz + fxr12ε+ cxr32ε

z + r32ε
and iy(~V) =

iyz + fyr22ε+ cyr32ε

z + r32ε
(2.10)

2.5.1.3 Slopes

It can be shown that as ε varies, ~i(~H) moves on a straight line. Its slope is

sH =
ix − ix(~H)

iy − iy(~H)
(2.11)

This expression simpli�es to

sH =
ix − ix(~H)

iy − iy(~H)
=
fyr21 + cyr31 − iyr31
fxr11 + cxr31 − ixr31

(2.12)

The variables ε and z both vanish. sH depends only on R, K and ~i(~O).
For the vertical camera movement by ~V , one gets the similar expression

sV =
iy − iy(~V)

ix − ix(~V)
=
fxr12 + cxr32 − ixr32
fyr22 + cyr32 − iyr32

(2.13)

Note that sH is a slope x/y, whereas sV is a slope y/x. This is because R is expected to be
near I, and in that case ~i(~H) and ~i(~V) move almost horizontally and vertically on the images
respectively, and so both slopes approach zero (and not in�nity).

14

2.5.1.4 Samples from image correspondences

In order to apply this to estimate R, the dataset must be such that the camera centers of views
v(x− 1, y), v(x, y), v(x+ 1, y), . . . must be in an approximately straight line (�horizontal�). For
views v(x, y − 1), v(x, y), v(x, y + 1), . . . they must also also be an approximately straight line
(�vertical�), which is perpendicular.
After the image correspondences were computed, for each feature f , a horizontal and a vertical

slope sH(f), sV (f) are estimated using line �tting on the feature point correspondences for those
view indices.
This gives for each feature f a sample

Sf = 〈p(f, v), sH(f), sV (f)〉 (2.14)

p(f, v) is the feature point position of f for the reference view v. This corresponds to the (ix, iy)
from the previous formulae. If multiple reference views were used, the samples from di�erent
reference views can be put together here.

2.5.1.5 Estimating camera rotation

It is possible to estimate {r11, r21, r31, r12, r22, r32} from these samples by solving two linear
homogeneous least squares systems. From this R could probably be completed knowing it is an
orthogonal matrix with det(R) = 1.
But this is not done in the algorithm. Instead a parametrization of R with three Euler angles

(X,Y, Z) is optimized with an iterative method. The error to minimize is the mean squares sum
of the predicted slopes for a given R, minus the measured slopes.
The parametrization (X,Y, Z) of R is Rᵀ = Rz(Z)Ry(Y)Rx(X). Rᵀ is the orientation of

the camera in world space. So the roll rotation Z (around the optical axis) is performed last.
The three angles are interdependent: Say X is adjusted to minimize the error. Then Y is

adjusted to reduce the error even more. Now X is no longer at the optimal setting, and needs
to be readjusted.
The roll rotation has the most impact. Three golden-section searches are performed sequen-

tially which optimize Z, X and Y , in that order. The entire process is repeated iteratively until
a certain error threshold. With each (outer) iteration, the tolerance and search interval of the
(inner) golden-section searches are reduced.

2.5.1.6 Accuracy

On an arti�cially generated test dataset with a known camera rotation of (10°, 20°, 5°), the
estimated rotation was (10.5289°, 20.6345°, 5.36933°). This arti�cial dataset has some random
noise and outliers, 200 features, and 30× 30 views. It is hard to estimate the accuracy for real
datasets because the real rotation is unknown and typically very small.

2.5.2 Feature point depths

As shown on �gure 2.7, feature points of the same feature get di�erent depths on di�erent views
because of the rotation R. The �gure shows the situation in world space. There is one global
position of the feature f , and di�erent positions of the camera centers v1, v2.
Figure 2.9 shows the same situation, but instead in the overlaid view spaces of the two cameras.

The plane formed by the feature points for f in the di�erent view spaces, has the same orientation
R.

15

d1d2

p(f,v1)p(f,v2)

R

v1 & v2

f2

f1

Figure 2.9: View of �gure 2.7 from overlaid view space coordinate systems

This algorithm calculates for each feature f , the view space coordinates of the feature points
p(f, vi) = 〈x, y, d, w〉, using ~vf,vi = K−1(dx, dy, d). Then, using linear least squares, a plane it
�tted to the points ~vf,vi , and its normal vector ~nf is computed. This plane �tting should average
out the noise in the depth measurements.
Then the computed normal vectors ~nf for each feature f are averaged to get a global estimate

~n. A preliminary rotation matrix Rxy is derived from ~n. It contains the correct pitch and yaw
rotation of the camera relative to P , but not the correct roll.
Now again for each feature f , the view space points ~vf,vi are taken, and premultiplied by Rxy.

Using only the x and y components of the resulting vectors, a 2D rotation angle αf is estimated
such that those 2D points become horizontally/vertically aligned.
Again an average α is computed and transformed into a 3D roll rotation matrix Rz.
Finally Rxy and Rz are combined into R.
There are some problems left with this implementation. On the arti�cially generated test

dataset (same as previously), a rotation of (9.93871°, 19.8223°, 5.22812°) was estimated. The
correct values are (10°, 20°, 5°). So the method appears to be more accurate.

16

2.6 Straight depths

Knowing R, the straight depth of each feature f can now be calculated. It is the orthogonal
distance of the feature point in the scene, to the plane P . This is the distance sd in �gure 2.7.
In can be samples from each feature point distance di, using the rotation R and the camera
intrinsic matrix K.
Two methods are available for estimating the straight depth sdf of each feature. One aggre-

gates the measured feature point distances di. Another estimates the straight depths from the
relative scales of the feature points, whereby one or more straight depths are �xed manually.
In the case where no depth maps are available, the second method can be used. Some (at

least one) depth then need to be determined manually. If depth maps are available, the second
method can still be used to complete or correct estimations from the �rst method.

2.6.1 Aggregating feature point depths

For each feature point p(f, v) = 〈x, y, d, w〉 which has a feature point depth d, the straight depth
of that feature sdf can be estimated.
The feature point is �rst back-projected into the camera's view space with ~v = K−1(dx, dy, d).

Then it is transformed into the view space of a camera with the same optical center, but per-
pendicular to P . This is ~v′ = Rᵀ~v. The straight depth is the third component of ~v′.
For each feature f , samples sdf,v are calculated in this way. They should theoretically be all

the same, but due to noise, outliers, and the error in R, they will di�er. At least the noise part
of the error can be removed by averaging the samples.
To also remove the in�uence of outliers, the following procedure is used: First the median of

the samples sdf,v is computed. It is not a�ected by outliers, but by the noise. Then the sdf,v
whose absolute di�erence to the median is above a given threshold, are removed. The remaining
samples are averaged.
This average is used as the �nal sdf . t is set to 10 mm. As a metric of accuracy, the standard

deviation of these samples is also taken.

2.6.2 Depth from disparity

This alternate method computes straight depths using only the relative scales of the di�erent
features' disparities, and some �xed feature depth given as input. It proceeds in three steps: (1)
Calculate the relative scale for each pair of features. (2) Derive a global scale for each feature.
(3) Using at least one known depth, calculate the depth of each feature.
First the feature points p(f, v) of each feature are undistorted (if any distortion) and unrotated.

For this the image coordinates are premultiplied by KRᵀK−1. This is invariant of the feature
depths, and d is �xed to 1.

2.6.2.1 Pairwise scale ratios

The feature points of each feature fi now all have the same pattern, except for a di�erent scale,
a di�erent position in the image, and a di�erent subset of covered views.
For each pair of features (fi, fj), a relative scale rj→i, and a translation ~t ∈ R2 are computed

that make the two feature point sets overlap, by optimizing

∀v : p(fi, v) = rj→ip(fj , v) + ~t (2.15)

17

If the two features were taken on di�erent reference views, then this linear least squares
problem is solved for rj→i and ~t.
Otherwise, if the two features were taken on the same reference view rv, then is is known that

p(fi, rv) and p(fj , rv) should coincide perfectly: They represent the same view, and they were
initially chosen as feature points, so they have no error. So the feature point positions for fv
are �xed, and for each view v 6= rv, a sample of rj→i is calculated using

v : rv,j→i =
p(fi, rv)− p(fi, v)
p(fj , rv)− p(fj , v)

Samples closer to the rv are given a lower weight. They have more error because of the
limited pixel resolution. The samples are then averaged to obtain rj→i. The translation is set
to ~t = p(fi, rv)− s× p(fj , rv).
The resulting rj→i is discarded or assigned a lower weight if the error of the solution is too

large. The resulting ~t is not further used (only to calculate the error).
Calculating rj→i for each feature pair (fi, fj) gives a pairwise scales matrix, as seen shown in

�gures 2.10 and 2.11. The axis are the feature indices i and j. Because each unordered pair is
considered only once, the matrix is triangular. When there are multiple reference views, features
from two di�erent reference views have none (or little) feature points in common. This causes
the black areas in the lower-left part in �gure 2.11.

2.6.2.2 Global scale ratios

The next step is to deduce global scales {rf0 , rf1 , rf2 , ...} from these samples. The global scale

of one (arbitrarily chosen) feature f0 is set to rf0 = 1.
Then all the global scales are calculated such that

∀i, j :
rfj
rfi

= rj→i

This is done by solving a sparse linear least-squares system A~x = ~b. The system consists of
equations {

∀i, j : rfj × rj→i − rfi = 0

rf0 = 1

So the A matrix is very large and sparse. It has one column for each relative scale ratio, and
one row for each feature. A sparse QR decomposition is done to compute it, using the Eigen

linear algebra library.

2.6.2.3 Depths

The scale ratios relate directly to the depths: Using the pin-hole camera model, one gets

∀i, j : sdi
sdj

=
rfj
rfi

where sdi, sdj are the straight depths of the features fi, fj . As a consequence, there is one global
s such that

∀i : sdi = s× rfj

18

Figure 2.10: Pairwise feature scales matrix

Figure 2.11: Pairwise feature scales matrix (multiple reference views)

19

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

calculated measured

Figure 2.12: Calculated v. measured straight depths

One or multiple known depths {sd′0, sd′1, ...} need to be given as input. They must also be straight
depths. From these, s is calculated using

s =

∑
i sd
′
i∑

i rfi

Then, the remaining sdi are calculated using s and the global scales rfi .
This parameter s will be the scale of the �nal camera positions. If it is at a wrong value,

then the coordinate system of the �nal camera positions will globally be at the wrong scale (not
corresponding to the actual size of the scene, given by the depth maps). This will lead to an
error when view synthesis is done, that gets larger linearily with the baseline. It may be needed
to manually readjust the scale after the calibration is done.

2.6.2.4 Results

Figure 2.12 shows the straight depth of 135 features, sorted in ascending order. The �measured�
(red) line are the depth values taken from the depth maps, using the previous method in section
2.6.1. The �calculated� (blue) line are the same depth values, calculated only using the relative
scales of the feature points. Only 3 known depth values were taken to compute these values.
The root mean square error in this example is about 17.60 mm. This error can be both in

the measured and in the calculated depth values. This graph does not indicate whether the
measured or the calculated values are wrong: The �measured� line is smooth only because the
samples have been sorted by the �measured� values.

20

2.7 Camera positions

Finally, having image correspondences, the camera rotation, and the straight depths, the camera
center positions can be computed.

2.7.1 Relative camera positions

For each reference view, a set of relative camera positions cv will be computed. It is the position
of the camera center for view v, relative to that of the reference view. If there are multiple
reference views, the process is repeated for each reference view. The di�erent sets of relative
camera positions will then be stitched together in the next step.
If there is distortion in the camera intrinsics, all feature points p(f, v) are �rst undistorted.

Then they are unrotated, by premultiplication with KRᵀK−1.
The camera position for the reference view rv itself is always set to crv = (0, 0).
For each other target view v, for each of its feature points p(f, v), a sample cf,v = (x, y) of its

camera position is calculated using

cf,v =

(
[px(f, v)− px(f, rv)]× sdf

fx
,
[py(f, v)− py(f, rv)]× sdf

fy

)
where fx, fy are the focal lengths from the camera intrinsic matrix K. This is derived directly
from the pin-hole camera model.
In theory all c∗,v should have the same value (for the same v), but there can be a large

deviation because of errors in the image correspondences, rotation, or straight depth. The
deviations necessarily get larger the further the target view v is from the reference view rv. This
is why in section 2.3.4, the outreach of the optical �ow needed to be kept small.
Figures 2.13 and 2.14 show the relative camera positions computed for an arti�cial data

set. This is an arti�cially generated scene with random features, for which the accurate image
correspondences, rotation, camera parameters and depths are known. The �gures show all the
samples cf,v, with a di�erent color for each f . At the center is the reference view rv. On �gure
2.13, the rotation is set to a slightly incorrect value. On �gure 2.14, the straight depths for some
features are set an an incorrect value. When they are both set to the correct value, a perfect
overlap is obtained.
The rotation R is a global value, and an incorrect value will a�ect all samples equally. But

the straight depth sdf is di�erent for each each feature f . So, in a �rst pass, the algorithm �nds
bad features, whose straight depth is likely to be incorrect.
For each view v, it takes the mean of the feature points p(f, v), and then takes each feature

point's distance e(f, v) to the mean. For features with an incorrect straight depth, this value will
likely be larger. (Even though the mean is also a�ected by the outliers.) After this is done for
each view, the average e(f) is calculated for each feature. The features whose e(f) are largest
are marked as bad features and removed. During this procedure, features from all reference views
are considered.
Figures 2.15, 2.16 and 2.17 show camera position samples cf,v for a real dataset, both before

and after this �ltering. The distance between adjacent camera positions is about 1 mm. Figure
2.17 is a close-up view of feature points, far from the center (i.e. the reference view rv). It
can be seen that after the �ltering, the outlier samples are removed and the camera positions
become recognizable.
The camera positions cv are computed by averaging the �ltered camera position samples cf,v.

They are shown on �gure 2.17 also (the • symbols). If the variance is too large, or there are not

21

enough samples, the camera position cv is rejected. If outliers are removed, then this averaging
should remove the noise in the image correspondences.

2.7.2 Stitching

If only one reference view was used, this completes the calibration process.
If multiple reference views were used, the previous step is repeated for each reference view,

giving each time relative camera positions with that reference view at origin. To stitch these
together into absolute camera positions in a common coordinate system, the absolute camera
positions of the reference views need to be determined.
As shown in section 2.3.4, the reference views need to be in a grid. (Allowing for arbitrarily

chosen reference views would render this algorithm more complex.) The center reference view is
chosen as origin, its absolute camera position is set to (0, 0). The distances between horizontally
and vertically adjacent reference view camera positions, are computed by comparing relative

camera positions that exist for both reference views.
For this to work the reference views grid in section 2.3.4 needed to be set so that the overlap

is big enough. Note that for the optical �ow, the outreach is an upper bound, not all features
are tracked that far, and many are �ltered out.
This algorithm only compares horizontally and vertically adjacent reference views, no others.

An algorithm that takes all overlaps into account and does not require the reference views to be
on a grid might be better, but would be more complicated.
Then, knowing the absolute camera positions of each reference view Crv, and relative camera

positions c
(rv)
v , the �nal absolute camera positions for each view v are computed as

Cv = Crv + c(rv)v

For views v where relative camera positions exists for multiple reference views rv, only the one
where ‖v − rv‖ is smallest is taken (the euclidian distance between view indices).
The distances between these absolute camera position samples is used as metric of accuracy.

It should ideally be zero.
Figures 2.18 and 2.19 show �nal absolute camera positions, for a real dataset. The irregularity

in the bottom area of �gure 2.18 was caused by the vertical camera movement in the acquisition
system. The distance between adjacent camera positions is about 1 mm. The close-up �gure
2.19 shows how the best sample for Cv was chosen during the stitching. Rejected samples are
in gray. This �gure is greatly exaggerated in y direction.

2.7.3 Redistributing image correspondences

The reference views and outreach were initially set for the optical �ow tracking. However, for
the camera position computation, it may be better to have more reference views, with even
smaller outreach.
There is a program to redistribute the image correspondences. For each reference view rv, some

views are selected that will become pseudo-reference views rv′, in the new image correspondences.
Overlapping subsets of the feature points with reference view rv, with a limited radial outreach,
are selected and copied for rv′.
They are pseudo-reference views unlike with the real reference view, they have an error from

the optical �ow feature tracking.
But no better results were obtained from this.

22

Figure 2.13: Camera positions for arti�cial dataset (erroneous R)

Figure 2.14: Camera positions for arti�cial dataset (erroneous straight depths)

23

Figure 2.15: Camera positions for real dataset, un�ltered and �ltered (close to center)

Figure 2.16: Camera positions for real dataset, un�ltered and �ltered (far from center)

Figure 2.17: Camera positions for real dataset, un�ltered and �ltered (close-up)

24

Figure 2.18: Stitched absolute camera positions

Figure 2.19: Stitched absolute camera positions, close-up with rejected samples

25

2.7.4 Final camera extrinsics

The �nal Rt extrinsic camera matrix to compute is a transformation from world space to view

space, such that
v = Rw + ~t

The world space can be any coordinate system, but must be the same for every view.
For this method, world space is set to lie on the plane P . The absolute camera positions are

translations in world space, where the third component is set to z = 0. The computed R is the
orientation of the camera in world space. The transformation is

v = R(w + ~cv)

To obtain the �nal Rt matrices, R is unchanged, and the translation is set to ~t = R~cv.
This concludes the calibration.

26

3 Usage

The above method is implemented as part of the licornea_tools package. Tools in calibration
that are pre�xed with cg are speci�c to it.

3.1 Preliminaries

Before doing the camera grid calibration, the following needs to be done:

� Prepare parameters.json dataset parameters �le for the dataset. It indicates the index
ranges (and steps), and the locations and �le name formats of the images and depths.

� Prepare intr.json �le with intrinsic parameters of the camera. It can contain distortion
coe�cients, if the images (and depths) are distorted. But this was not tested.

� Do the reprojection of the depth maps. The reprojected depth maps will be at the location
indicated by depth_filename_format in the root group of the dataset parameters.

3.2 Image correspondences

3.2.1 Reference grid

Firstly, the references view grid can be chosen using

calibration/cg_choose_refgrid parameters.json 200 100 refgrid.json

This computes a reference grid (indices of the reference views), and puts it into refgrid.json.
Here, the horizontal key is 200, and the vertical key is 100. If the keys are larger than the
horizontal and vertical ranges, the reference grid will consist only of one reference view. The
program chooses the reference views such that there are no missing views on each vertical axis.

3.2.2 Undistort images (if applicable)

If there is distortion in the images (de�ned in the intrinsic parameters �le), then an image can
be undistorted using

calibration/undistort_image in_image.png out_image.png intr.json texture

For the depth maps, use depth instead of texture. It will then use nearest neighbor interpola-
tion. This needs to be done for each image and each depth map in the dataset.
Alternately, it is also possible to compute the optical �ow on the distorted images, and undis-

tort the image correspondences later.

27

3.2.3 Optical �ow features

Now the feature points on the reference views to track are selected using

calibration/cg_optical_flow_features parameters.json refgrid.json of/

It displays a graphical user interface, and the parameters can be adjusted such that good feature
points get selected for all reference views. Hitting Enter puts a �le of/fpoints_*.json into the
of/ directory, each containing the feature points for one reference view.
All of the features will get globally unique names of the form feat_RFFF, where R is the

number of the reference view, and FFF the number of the feature.

3.2.4 Optical �ow correspondences

Now the optical �ow correspondences can be computed, using

calibration/cg_optical_flow_cors parameters.json of/fpoints_100 ,100. json

250 150 cors_100 ,100. bin

This computes the image correspondences from the optical �ow for the reference view feature
points of/fpoints_100,100.json. They get written into cors_100,100.bin. If there are mul-
tiple reference views, this process needs to be repeated for each one, by calling the program once
for each �le in of/.
In this example, the horizontal outreach is 250, and the vertical outreach is 150.
This process takes by far the most time in the calibration process. It will open each image �le

once. The image correspondences output �le can have a .bin or a .json �lename extension. If
.bin is used, they are stored in a binary format that takes up less disk space, and can be read
faster. This is useful for large datasets.
To copy the image correspondences from/to binary format, use

calibration/copy_cors cors_100 ,100. json cors_100 ,100. bin

Information about the image correspondences can be obtained using

calibration/cors_info parameters.json cors_100 ,100. bin

3.2.5 Merge image correspondences

The image correspondences computed for the di�erent reference views should now be merged
into one �le, using

calibration/merge_cors cors_100 ,100 _f2.bin cors_200 ,100 _f2.bin cors_all.bin

If there are more than two reference views it should be called multiple times. The resulting �le
will still contain the information about the di�erent reference views. This makes the following
steps easier. All of the programs are aware that there can be features with di�erent reference
views in the image correspondences �le.

3.2.6 Visualizing image correspondences

The resulting image correspondences can be visualized in two ways:
To see the all the feature points on one view, use

calibration/cg_cors_viewer_v cors_all.bin

It displays a graphical user interface where the view to show can be selected.
To see all the feature points of one feature, use

28

calibration/cg_cors_viewer_f cors_all.bin

It displays a graphical user interface where the feature to show can be selected. It displays a
dot for each position of this feature (on a di�erent view). The (backdrop) view to show can also
be selected. With

calibration/cg_cors_viewer_f cors_100 ,100. bin closeup

it instead displays a closeup view of the image, with only the area where the feature points are
placed. It can also show the corresponding depth map as overlay. Figures 2.3 and 2.4 were
generated with this.

3.2.7 Feature point depths (if applicable)

The feature point depths can be added to the image correspondences using

calibration/read_feature_depths cors_all.bin 1

cors_all_with_depths.bin

It will open each (reprojected) depth map �le once, which can also take a lot of time. The image
correspondences with depth are stored into cors_all_with_depth.bin in this example. The
output �le can also be the same as the input �le (then it will replace it).
An optional parameter (here 1) indicates the margin of the window to look for a depth. With

the value 1, it looks at the pixel obtained by rounding down the feature point position (�oating
point value), plus a margin of 1 pixels, forming a 3 × 3 pixel square window. It selects the
minimal value in this window as the feature point depth.

3.2.8 Filtering image correspondences

The feature points should be �ltered both automatically and manually. First use

calibration/cg_filter_features parameters.json cors_all.bin

cors_all_f.bin 125 75 use_depth

to �lter out most obvious bad image correspondences. In this example 125 and 75 are the
number of expected feature points in horizontal and vertical directions. It should be the outreach
divided by two. (Because if the reference view is close to the border, only half of the outreach
can be done). If use_depth is provided, it also checks the constancy of the feature depths.
(There will be a slight linear increase in the depths, but there must be no jumps) It should
be set, unless the calibration is done without depth maps. Some hardcoded parameters in
src/calibration/cg_filter_features.cc probably need to be adjusted to get good results
for a particular data set.
To �lter out the remaining bad features, cg_cors_viewer_f should be used in closeup mode.

The names of the features to remove should be noted. Then, use

calibration/remove_cors cors_all_f.bin cors_all_f2.bin

feat1003 ,feat1010 ,feat2110 ,feat3001

to �lter out those features, and save the remaining image correspondences into the �le cors_all_f2.bin.

3.2.9 Undistort image correspondences (if applicable)

If there is distortion (de�ned in the intrinsic parameters �le), and the images were not undistorted
before, the image correspondences can be undistorted now, with

calibration/undistort_cors cors_all_f2.bin

cors_all_f2_undist.bin intr.json

29

It puts each feature point to the position where it would be if the image had been undistorted
before the optical �ow computation. The undistorted image correspondences must be used for
the subsequent steps.

3.3 Rotation estimation

As described before, the rotation estimation can be done using the slopes of the optical �ow
(when no depth maps are available), or using the feature point depths.

3.3.1 Measuring optical �ow slopes

The optical �ow slopes on the image correspondences can be measured using

calibration/cg_measure_optical_flow_slopes parameters.json cors_all_f2.bin

intr.json slopes.json

It will measure a horizontal and a vertical slope for each feature point from each reference view,
and write it into slopes.json.

3.3.2 Visualizing optical �ow slopes

To visualize optical �ow slopes (actual and model), use

calibration/cg_slopes_viewer parameters.json intr.json slopes.json

where slopes.json are measured optical �ow slopes. If there are no measured optical �ow
slopes, a feature points �le can also be given as input (instead of slopes.json), such as
of/fpoints_100,100.json.
It displays a graphical user interface where the model Euler angles can be adjusted, and the

modelled slopes are displayed, along with the measured slopes. This can be used to manually
estimate Euler angles that correspond to the measured optical �ow slopes.

3.3.3 Optimizing optical �ow slopes

To estimate a camera rotation R using the measured optical �ow slopes, use

calibration/cg_rotation_from_fslopes intr.json slopes.json R.json

It will save the estimated rotation matrix into R.json.

3.3.4 Rotation from depths

To instead estimate the rotation using the feature points depths, use

calibration/cg_rotation_from_depths cors_all_f2.bin intr.json R.json

3.4 Straight depths

3.4.1 Aggregate feature point depths

To calculate the feature point straight depths using the feature points depths, use

calibration/cg_straight_depths_from_depths cors_all_f2.bin R.json

depths.json

30

3.4.2 Depth from disparity

To estimate the straight depths using only the relative scales of the feature points, use

calibration/cg_straight_depths_from_disparity cors_all_f.bin intr.json

R.json some_depths.json depths.json

The �le some_depths.json needs to contain at least one measured straight depth, or more to
get a better �t. If no depth maps are available, it can for example be obtained manually using
laser distance measurement on one of the chosen feature points of a reference view.
This can also be used to complete the straight depths obtained from aggregating feature point

depths: Two image correspondences �les cors_all_f.bin and cors_all_fd.bin are maintained.
The latter has been �ltered with the use_depth option when using calibration/cg_filter_features,
the former without it.
Then cg_straight_depths_from_depths is executed on cors_all_fd.bin. To also obtain

straight depths for the additional image correspondences that remain in the �le cors_all_f.bin,
cg_straight_depths_from_disparity is now used, whereby the previously obtained straight
depths are given as some_depths.json.

3.5 Camera positions

3.5.1 Relative camera positions

To compute the relative camera positions, use

calibration/cg_rcpos_from_cors parameters.json cors_all_f2.bin intr.json

R.json depths.json rcpos.json

The resulting rcpos.json �le will contain the relative camera positions for all the reference
views. There is no need to run the program multiple times.

3.5.2 Stitching

To stitch the relative camera positions together and obtain the �nal camera parameters, use

calibration/cg_stitch_cameras refgrid.json rcpos.json intr.json R.json

cams.json

Here refgrid.json is the reference grid �le chosen as the �rst step. This needs to be done even
if there is only one reference view. cams.json will contain the �nal camera parameters.

3.5.3 Visualization and export

To visualize the camera parameters, use

camera/visualize cams.json cams.ply world 0.3

It will generate the PLY �le cams.ply containing a 3D visualization of the cameras in world
space. 0.3 is the size of the cameras in this visualization.
To convert the camera parameters into the format and convention used by VSRS, use

camera/export_mpeg cams.json cams.txt

31

	Introduction
	Requirements

	Method
	Overview
	Preliminaries
	Image correspondences
	Choosing feature points
	Optical flow tracking
	Filtering features
	Reference views
	Feature point depths
	Feature point weights

	Observations
	Rotation
	Depth

	Camera rotation
	Optical flow slopes
	Flow equation
	Horizontal and vertical camera movement
	Slopes
	Samples from image correspondences
	Estimating camera rotation
	Accuracy

	Feature point depths

	Straight depths
	Aggregating feature point depths
	Depth from disparity
	Pairwise scale ratios
	Global scale ratios
	Depths
	Results

	Camera positions
	Relative camera positions
	Stitching
	Redistributing image correspondences
	Final camera extrinsics

	Usage
	Preliminaries
	Image correspondences
	Reference grid
	Undistort images (if applicable)
	Optical flow features
	Optical flow correspondences
	Merge image correspondences
	Visualizing image correspondences
	Feature point depths (if applicable)
	Filtering image correspondences
	Undistort image correspondences (if applicable)

	Rotation estimation
	Measuring optical flow slopes
	Visualizing optical flow slopes
	Optimizing optical flow slopes
	Rotation from depths

	Straight depths
	Aggregate feature point depths
	Depth from disparity

	Camera positions
	Relative camera positions
	Stitching
	Visualization and export

