Epipolar lines calculation

Tim Lenertz

October 6, 2016

1 Contents

- Extrinsic and intrinsic camera matrices
- Projection matrices with different depth conventions
- Homography matrix (gives point on epipolar line)
- Essential and fundamental matrices
- Calculation of epipolar line equation

2 Camera matrices

Camera parameters consist of two matrices, extrinsic matrix Rt and intrinsic matrix K.

2.1 Extrinsic matrix Rt

Extrinsic matrix is the pose (position & orientation) of the camera in world space. It is a rigid transformation matrix, consisting of a rotation \mathbf{R} and translation \vec{t} . It is 4×4 matrix in homogeneous coordinates.

$$\mathbf{Rt} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} & t_0 \\ r_{1,0} & r_{1,1} & r_{1,2} & t_1 \\ r_{2,0} & r_{2,1} & r_{2,2} & t_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1)

 $\vec{\hat{x}} = \mathbf{Rt} \ \vec{\hat{w}}$ (in homogeneous coordinates) is equivalent to $\vec{x} = \mathbf{R} \ \vec{w} + \vec{t}$.

 \vec{w} is 3D point in world space (global coordinate system). \vec{x} is the same point in view space for one camera, where the camera center is at origin, and either $+\vec{z}$ or $-\vec{z}$ point in camera view direction. (depends on convention used)

$$\begin{bmatrix} wx_0 \\ wx_1 \\ wx_2 \\ w \end{bmatrix} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} & t_0 \\ r_{1,0} & r_{1,1} & r_{1,2} & t_1 \\ r_{2,0} & r_{2,1} & r_{2,2} & t_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ 1 \end{bmatrix}$$

$$\hat{\vec{x}} = \mathbf{Rt} \ \hat{\vec{w}}$$

$$(2)$$

2.1.1 MPEG convention

The extrinsic matrices in DERS and VSRS configuration files use a different convention: Instead the matrix given as

$$\begin{bmatrix} r'_{0,0} & r'_{0,1} & r'_{0,2} & t'_{0} \\ r'_{1,0} & r'_{1,1} & r'_{1,2} & t'_{1} \\ r'_{2,0} & r'_{2,1} & r'_{2,2} & t'_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

Represents the transformation $x = \mathbf{R}'(\vec{w} - \vec{t'})$.

To convert it into \mathbf{R} , \vec{t} such that $\vec{x} = \mathbf{R}\vec{w} + \vec{t}$:

$$\mathbf{R} = \mathbf{R}' \qquad \qquad \vec{t} = -(\mathbf{R}\vec{t'}) \tag{4}$$

2.2 Intrinsic matrix K

Intrinsic matrix (or camera matrix) is projection from view space to pixel coordinates on the image. In pin-hole camera model, the mapping is

$$u = \frac{f_x x_0}{x_2} + t_x \qquad v = \frac{f_x x_1}{x_2} + t_y \tag{5}$$

where $\vec{p} = (u, v)$ are pixel coordinates, $\vec{x} = (x_0, x_1, x_2)$ is 3D point in view space. (f_x, f_y) are focal lengths (usually same), and (t_x, t_y) are offsets of center point in image. Focal lengths and offsets are adjusted to image pixel size.

Intrinsic matrix **K** is 3×3 in homogeneous coordinates:

$$\vec{p} = \mathbf{K} \vec{x}$$

$$\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} f_x & 0 & t_x \\ 0 & f_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$
(6)

The transformation loses depth information, and ${\bf K}$ is non-invertible (singular).

3 Projection matrix P

Projection matrix **P** is 4×4 matrix derived from the intrinsic matrix **K**, which keeps depth. The projected depth d is a hyperbolic function of x_2 . (= The z component of view space point vector, i.e. the distance to the camera center, orthogonal to its image plane.)

Two distances z_{near} and z_{far} are defined such that for all objects of interest in the image, $z_{near} < x_2 < z_{far}$. (Assuming x_2 increases in camera view direction.)

Projection matrices with different conventions for depth projection are possible:

3.1 Unsigned normalized disparity

$$\vec{p} = \mathbf{P} \vec{x}$$

$$\begin{bmatrix} wu \\ wv \\ wd \\ w \end{bmatrix} = \begin{bmatrix} f_x & 0 & t_x & 0 \\ 0 & f_y & t_y & 0 \\ 0 & 0 & -\frac{z_{\text{near}}}{z_{\text{far}} - z_{\text{near}}} & \frac{z_{\text{near}} z_{\text{far}}}{z_{\text{far}} - z_{\text{near}}} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$
(7)

Maps the depth such that $x_2 = z_{\text{near}} \rightsquigarrow d = 1$ and $x_2 = z_{\text{far}} \rightsquigarrow d = 0$.

This is compatible with the depth maps of some test sequences (Poznan Blocks and Bunny), when z_{near} and z_{far} are correctly set, and the range 0...255 in the depth map is linearly mapped to 0...1.

3.2 Signed normalized depth

$$\begin{bmatrix} f_x & 0 & t_x & 0\\ 0 & f_y & t_y & 0\\ 0 & 0 & \frac{z_{\text{near}} + z_{\text{far}}}{z_{\text{far}} - z_{\text{near}}} & -\frac{2 z_{\text{near}} z_{\text{far}}}{z_{\text{far}} - z_{\text{near}}} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(8)

Maps the depth such that $x_2 = z_{\text{near}} \leadsto d = -1$ and $x_2 = z_{\text{far}} \leadsto d = +1$.

It is compatible with projection matrices used by OpenGL, but additionally the scaling and offsets must be adjusted so that u, v and fall in $-1 \cdots + 1$.

3.3 Unsigned normalized depth

$$\begin{bmatrix} f_x & 0 & t_x & 0 \\ 0 & f_y & t_y & 0 \\ 0 & 0 & \frac{z_{\text{near}} + z_{\text{far}}}{z_{\text{far}}} & -\frac{z_{\text{near}} z_{\text{far}}}{z_{\text{far}} - z_{\text{near}}} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(9)

Maps the depth such that $x_2 = z_{\text{near}} \rightsquigarrow d = 0$ and $x_2 = z_{\text{far}} \rightsquigarrow d = +1$. (But not the same as simply reversing d from unsigned normalized disparity).

4 Homography

Unlike the intrinsic matrix \mathbf{K} , the projection matrix \mathbf{P} is invertible. With this homography between images with depth can be calculated.

In homogeneous coordinates:

$$\vec{\hat{p}} = \mathbf{P} \, \mathbf{Rt} \, \vec{\hat{w}} \tag{10}$$

and so

$$\vec{\hat{w}} = (\mathbf{P} \mathbf{R} \mathbf{t})^{-1} \, \vec{\hat{p}} = \mathbf{R} \mathbf{t}^{-1} \, \mathbf{P}^{-1} \, \vec{\hat{p}}$$

$$\tag{11}$$

4.1 Homography matrix H

Let A and B be two camera views, with extrinsic and projection matrices $(\mathbf{Rt}_A, \mathbf{P}_A)$ and $(\mathbf{Rt}_B, \mathbf{P}_B)$. \mathbf{z}_{near} , \mathbf{z}_{far} and the depth projection conventions are chosen for A and B.

Let $\vec{p_A} = (u_A, v_A, d_A)$ be the coordinates of a pixel in A, and its projected depth. The corresponding pixel coordinates $\vec{p_B} = (u_B, v_B, d_B)$ in B are calculated, in homogeneous coordinates, using:

$$\vec{p_B} = \mathbf{H}_{A \mapsto B} \, \vec{p_A}. \tag{12}$$

with

$$\mathbf{H}_{A \mapsto B} = \mathbf{P}_{\mathbf{B}} \mathbf{R} \mathbf{t}_{\mathbf{B}} \mathbf{R} \mathbf{t}_{\mathbf{A}}^{-1} \mathbf{P}_{\mathbf{A}}^{-1}$$
(13)

is the homography matrix from A to B. It is a 4×4 matric in homogeneous coordinates. When d_A is correctly set and there is no occlusion, (u_B, v_B) will fall on the same scene object on B as (u_A, v_A) does in A. The homography matrix is used for image warping in VSRS.

When (u_A, v_A) is fixed and d_A is varied, (u_B, v_B) moves along the epipolar line in B.

5 Essential matrix E

Let A and B be two camera views, with extrinsic matrices $\mathbf{Rt}_{\mathbf{A}}$ and $\mathbf{Rt}_{\mathbf{B}}$.

Let $\mathbf{M} = \mathbf{Rt_A} \ \mathbf{Rt_B^{-1}}$. (Rigid transformation from coordinate system of B into coordinate system of A).

M always consists of a rotation matrix **R** and translation vector \vec{t} :

$$\mathbf{M} = \begin{bmatrix} r_{0,0} & r_{0,1} & r_{0,2} & t_0 \\ r_{1,0} & r_{1,1} & r_{1,2} & t_1 \\ r_{2,0} & r_{2,1} & r_{2,2} & t_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(14)

Let

$$\mathbf{T} = \begin{bmatrix} 0 & -t_2 & t_1 \\ t_2 & 0 & -t_0 \\ -t_1 & t_0 & 0 \end{bmatrix}$$
 (15)

The essential matrix $\mathbf{E}_{A \mapsto B}$ from A to B is

$$\mathbf{E}_{A \to B} = \mathbf{T} \mathbf{R} \tag{16}$$

6 Fundamental matrix F

Let A and B be two camera views, with intrinsic matrices $\mathbf{K_A}$ and $\mathbf{K_B}$.

The fundamental matrix $\mathbf{F}_{A \mapsto B}$ from A to B is

$$\mathbf{F}_{A \mapsto B} = \left(\mathbf{K}_{\mathbf{A}}^{-1}\right)^{\mathsf{T}} \mathbf{E}_{A \mapsto B} \mathbf{K}_{\mathbf{B}}^{-1} \tag{17}$$

7 Epipolar line equation

For a given pixel position (u_A, v_A) , the line equation $v_B = f(u_B)$ of the epipolar line in B is:

$$v_B = \frac{-\mathbf{F}_{2,2} - \mathbf{F}_{0,2} u_A - \mathbf{F}_{2,0} u_B - \mathbf{F}_{0,0} u_A u_B - \mathbf{F}_{1,2} v_A - \mathbf{F}_{1,0} u_B v_A}{\mathbf{F}_{2,1} + \mathbf{F}_{0,1} u_A + \mathbf{F}_{1,1} v_A}$$
(18)