
State of the Art of Free Viewpoint Video

Tim Lenertz

February 20, 2016

Contents
1 Introduction 3

2 Acquisition 4
2.1 Camera . 4

2.1.1 Pin-hole camera . 4
2.1.2 Lens camera . 4

2.2 Epipolar geometry . 4
2.2.1 Epipolar plane image . 5

2.3 Light field . 5
2.3.1 Redundancies . 5
2.3.2 Parameterization . 6

2.4 Plenoptic camera . 6
2.4.1 Principle . 6
2.4.2 Availability . 7

2.5 Depth sensor . 7

3 Scene Reconstruction 8
3.1 Representations . 8
3.2 Cues . 8
3.3 Stereo . 9

3.3.1 Matching cost . 9
3.3.2 Cost minimization . 10
3.3.3 Graph-cut optimization . 11
3.3.4 Dynamic programming . 11
3.3.5 Semi-global matching . 12
3.3.6 Mutual information . 12

3.4 Shape from silhouette . 13
3.4.1 Visual hull . 13
3.4.2 Photo hull . 13
3.4.3 Ordinal visibility constraint . 13
3.4.4 Generalized voxel coloring . 14

3.5 Epipolar plane image (EPI) . 14
3.5.1 Observations . 15
3.5.2 Line detection . 15
3.5.3 Fine-to-coarse method . 15
3.5.4 Consistent labeling . 16
3.5.5 Global integration . 16
3.5.6 Redundancy and encoding . 16

3.6 MPEG Depth Estimation Reference Software . 17
3.6.1 Algorithm . 17
3.6.2 Development . 17

1

4 View Synthesis 18
4.1 Image-based rendering (IBR) techniques . 18

4.1.1 Lumigraph interpolation . 18
4.1.2 Depth-based lumigraph interpolation . 18
4.1.3 Plane sweeping . 19

4.2 DIBR techniques . 19
4.2.1 Correspondence interpolation . 20
4.2.2 Morphing . 20

4.3 MPEG View Synthesis Reference Software . 20
4.3.1 Input data . 20
4.3.2 Algorithm . 21
4.3.3 Extensions . 21

References 22

2

1 Introduction
Free viewpoint television (FTV) is an emerging
trend in the development of visual media, which
aims to allow the user to interactively change the
viewpoint of a captured 3D scene, and view it as
they would do naturally in the real world. It rep-
resents a next step in virtual reality technology
by providing more realism and interactivity than
stereoscopic video.
Super-multi view (SMV) light field displays ren-

der the FTV content from a dense range of hori-
zontally displaced camera poses, producing a vir-
tual parallax effect. This enables depth perception
when viewing the display, and also allows users to
walk in front of the display to change the view-
point. FTV content may also be rendered using ,
such as Oculus Rift. Combined with head and pos-
sibly whole body motion tracking, this creates an
immersive virtual reality (VR) experience.
While for virtual content traditional computer

graphics rendering methods are used, producing
FTV video content from a real scene requires a far
greater amount of data acquisition and processing.
Images are acquired using a number of cameras
at different poses, and view synthesis techniques
are used to render images from intermediary view-
points. This process involves scene reconstruction,
that is, extracting three-dimensional geometry in-
formation from the input camera images. Another
issue is efficient encoding and compressing of the
images and geometry. [1, 2, 3]
FTV works in a multi-step pipeline: [4]

Acquisition Views from a scene are acquired using
multiple cameras. Possibly virtual augmented
reality content, or auxiliary data such as depth
measurements are added.

Reconstruction From the input data geometry in-
formation about the scene is estimated, which
will be used to synthesize virtual views.

Transmission The aggregated data is encoded,
compressed and possibly transmitted to a
front-end. At the other end it is decoded.

Synthesis An image from a virtual viewpoint is
rendered using the available data.

Display The content is presented to the end user.
A user interface is set up such that the user
can change their viewpoint.

FTV is being developed in the context of Mov-
ing Picture Experts Group (MPEG) exploration
and standardization activities. A recent call for

evidence concerns rendering on SMV displays, and
scene reconstruction from a sparse set of input cam-
eras. [2, 5] MPEG-FTV also maintains two refer-
ence software packages called DERS and VSRS for
scene reconstruction and view synthesis.
In this report different state of the art and older

methods of acquisition, reconstruction and synthe-
sis are described in more detail. The algorithms
employed in DERS and VSRS are also described.

3

2 Acquisition
This section describes some of the ways input data
for FTV is acquired.

2.1 Camera
Camera parameters are generally separated into ex-
trinsic and intrinsic parameters. The extrinsic pa-
rameters are the pose of the camera, that is, its po-
sition and orientation in three-dimensional space.
Using three-dimensional homogeneous coordinates,
this can be expressed as a 4ˆ4 rigid transformation
matrix.
The intrinsic parameters describe the way it

maps incoming light to the recorded image, includ-
ing image size, field of view, lens distortion, focus
effects.

2.1.1 Pin-hole camera

The simplest camera model is the pin-hole camera.
The aperture is a single point in space. One ray of
light passes through it in each direction and hits the
image space in one position, resulting in a perspec-
tive projection. No defocus blurring effects occur.
Real (approximately) pin-hole cameras are imprac-
tical because of the low amount of incoming light
resulting in high exposure time.
The projection of 3D scene positions to 2D pixel

coordinates on the image frame can also be ex-
pressed using a 4ˆ4 projection transformation ma-
trix in homogeneous coordinates. The component-
wise division in the conversion from homogeneous
to cartesian coordinates accounts for perspective
foreshortening. Parallel projections can also be ex-
pressed using a transformation matrix.
A planar image space limits the viewing angle to

180°. Imaging devices such 3D scanners may in-
stead use a spherical or cylindrical image surface.
Ray projections and back-projections can then no
longer be modeled using simple matrix multiplica-
tions. With setups such as for instance a slit cam-
era moving attached to a rotating arm, the aperture
point may also be different across image pixels. [6]

2.1.2 Lens camera

Light rays emitted from a point source at distance
S1 on one side of the lens, converge at a point at
distance S2 on the other side, governed by the thin
lens formula

1

S1
`

1

S2
“

1

f
(1)

where f is the focal length of the lens, which de-
pends on its curvature. When S1 “ f then S2

diverges to infinity, meaning that parallel light rays
entering one side converge at a point in the focal
plane at distance f on the other side.
Thus an object a scene point at distance S1 can

be captured in with a lens camera by placing the
image plane at the corresponding distance S2. Un-
like with the pin-hole camera, an entire beam of
light rays emanating from that point is aggregated
onto one image space pixel. So the camera needs to
be focussed in function of the average distance of
the object to capture. In real cameras this is done
by mechanically moving the lens. In the human eye
the lens shape is adjusted.
Because points on scene objects are never at a

constant distance from the lens, focussing is always
approximate. However, S2 varies less quickly the
further the object point S1 is: In the most extreme
setting, S1 Ñ 8 and S2 “ f , so a sharp image of
far away objects is obtained with this single setting.
For nearer objects, a defocus blur effect occurs

when S1 does not match the actual distance of the
point source. Then the rays converge either in front
of or behind the image plane S2, and on the im-
age plane the beam of rays is splatted on a disk
region. Because this occurs for all neighboring ob-
ject points, the image is blurred and high-frequency
information of the object surface texture is irrevo-
cably lost.
The lens equation 1 is also a simplified model

that does not take into account spherical aberra-
tion, coma, chromatic aberration and other lens
distortion effects affecting the geometry and col-
oration of the image.

2.2 Epipolar geometry

When two pin-hole cameras are used on the same
scene, the relationships between the two images are
described by epipolar geometry.
An example is shown in figure 1. Two cameras

with centers OL and OR are observing a scene point
P . Its projections on the camera’s image space are
denoted pL and pR. The plane passing through the
points P , OL and OR is called the epipolar plane.
Its intersections with the two cameras’ image planes
are called the epipolar lines, on the cameras’ image
spaces. Now any scene point that lies on an epipolar
plane, necessarily gets projected onto to a point on
the epipolar lines of both cameras. This is true
regardless of the camera’s orientation, though part
of the visible content may get clipped by the image
bounds.
This fact is used to find image correspondences,

that is, image points that correspond to the same
scene point. Suppose the poses of both cameras are

4

known, and the goal is to find pR given pL, when
the scene position P is unknown. The ray OLpL
which passes through P is constructed, and then
the plane spanned by OLpL and OLOR is the epipo-
lar plane. Now the epipolar line on the right-side
camera is constructed, and it is known that pL lies
on that line. This is called the epipolar constraint.
It reduces image correspondence search to one di-
mension. Using an image similarity metric pL is
estimated, and from this the three-dimensional po-
sition of P can be reconstructed by triangulation.
Stereo reconstruction algorithms operate using

this basic principle, as will be elaborated in sec-
tion 3.3. The camera distance }OLOR} is called
the baseline.
For this purpose it is useful to transform the im-

ages such that all epipolar lines are horizontal, and
corresponding epipolar lines have the same vertical
coordinates. This can be expressed using a linear
two-dimensional image transformation and is called
rectification. Each horizontal scanline on a rectified
image corresponds to one epipolar plane.

Figure 1: Epipolar geometry

2.2.1 Epipolar plane image

This can be generalized to the case where in-
stead of two cameras, there is an array of cam-
eras tO1, O2, ¨ ¨ ¨ , Onu placed at regular intervals
between OL and OR. For a given epipolar plane,
the epipolar plane image (EPI) is formed by stack-
ing the epipolar lines taken from each camera on
top of each other.

2.3 Light field

The goal of FTV is to allow the viewer to freely
change the viewing position and orientation, within

a given region of space. The view synthesis sys-
tem should reproduce the image that a real camera
would acquire when placed at that pose in the real
scene, based on a set of input views collected from
cameras with given poses.
A camera does not interact with the physical ob-

jects it observes: All information used to record the
image exists in the space of the camera’s aperture.
Using ray optics, light is described as a dense set of
rays traveling through space in straight lines, in all
directions, and with different wavelengths. There is
no interaction between intersecting rays. This light
field can be modeled with the plenoptic function:

I “ fpx, y, z, θx, θy, λ, tq (2)

The plenoptic function f expresses the intensity of
the ray traveling through the spatial point px, y, zq
with direction given by the angles pθx, θyq, having
wavelength λ, at time t.
This is a natural representation of light, also var-

ious elements perceived the human vision system
correspond to first and second derivatives of f . For
example bars, edges, flickers and parallax disparity.
[7] It is a full characterization of the light that can
be recorded in a given region R of physical space
when px, y, zq P R. Depending on use additional
dimensions such as polarization may be added. As
cameras do not record full color spectrums, the di-
mension λ can be removed. Color can instead be
represented using 3 or more plenoptic functions for
the different color channels.
It is rarely possible to record this full five-

dimensional representation of the light field. Cam-
eras record small sections of the plenoptic function.
Based on redundancies of the plenoptic functions,
and models of the geometry and surface reflectance
properties of the three-dimensional objects which
generate the light field, light field rendering algo-
rithms described in section 4 interpolate a sparse
sampling of the light field to estimate the rays that
a virtual camera would record.

2.3.1 Redundancies

Rays originating from a light source hit object sur-
faces. Then from every surface point, they are re-
flected in all directions. A camera observes the
rays which pass through its aperture. This is
the simplest description which disregards various
other optical phenomena such as specular reflec-
tions, translucent objects, refraction, dispersion, or
object with no solid surfaces such as fog, smoke or
fire.
It is also generally assumed that object surfaces

have diffuse lambertian reflectance, that is all rays

5

emitted from one surface point have the same inten-
sity. Specular reflectance creates additional difficul-
ties for reconstruction and synthesis algorithms.
Within this model the 5D plenoptic function con-

tains several redundancies. Firstly, in an unob-
structed region space R, rays remain completely
unchanged as they travel in a straight line. For
any object O whose convex hull does not intersect
with R, all light rays reflected it it described fully
using a 4D plenoptic function [8]

I “ fpx, y, θx, θyq (3)

which is also called lumigraph [9]. px, yq will span a
plane facing the object. The lumigraph of any plane
parallel to to can be constructed knowing the ray
angles pθx, θyq. Hence the third spatial dimension
z is redundant. This 4D representation of the light
field is also referred to as ray space. [10, 11]
In addition to this, the lambertian reflectance al-

lows to find image correspondences on camera views
where the point are seen from different angles. It
also results in a redundant dimension in the epipo-
lar plane image (EPI) that can be exploited for data
compression, as will by elaborated later.
Also, object textures are generally piecewise

smooth, so that parallel rays have the similar in-
tensities. Image compression is possible because
high-frequency variations have lower amplitude.

2.3.2 Parameterization

To represent the section of interest of the lumi-
graph, most commonly the two-plane parameteri-
zation is used: Two parallel planes C and F are
placed on either side of a scene object. C is called
the camera plane, and F the focal plane. ~c “ pu, vq
and ~f “ ps, tq are 2D cartesian coordinates of points
on those planes. The parameterization

pu, v, s, tq ÞÑ px, y, θx, θyq

maps the pair of points p~c, ~fq to the ray passing
from ~c to ~f . In [9], the term full lumigraph refers
to a set of six two-plane pairs, necessary to capture
an object from all sides.
With this parameterization, the a 2D section of

the lumigraph obtained by fixing pu, vq “ pu0, v0q
corresponds precisely to the rectified image of a pin-
hole camera placed at pu0, v0q. Likewise, the 2D
section obtained by fixing pv, tq “ pv0, t0q corre-
sponds to the EPI of an array of cameras moving
about the line v “ v0 in the camera plane, for the
epipolar plane passing through the t0’s image scan-
line. An example (2D equivalent) is shown in figure

Figure 2: 2D view of two-plane parameterization

2. The highlighted section fpu3, ¨q corresponds to
a pin-hole camera image placed at u3.
This allows for the lumigraph of a scene to be

acquired using a 2D array of cameras. [8, 9, 12] In
a simple setup, defocus blurring is disregarded, the
approximation is made that all scene objects are
placed exactly at the focal plane. This is accurate
enough when capturing a scene where all objects
are relatively far away from the cameras. An array
of lens cameras is placed on the camera plane C in
a regular lattice. They are focussed on and oriented
towards the focal plane F , and the recorded images
are rectified so that their view frustum far plane
corresponds to F .
Many other lumigraph parameterizations are

possible. [8, ?] For example, by placing the C
plane at infinity and replacing pu, vq by ray angles
pσx, σyq, 2D sections which fix pσx, σyq correspond
to parallel projection images.
Lens cameras do not correspond to a simple sec-

tion of the two-plane lumigraph parameterization.
px, yq is allowed to cover the aperture area, and
projection to image pixels involves a base change
by which the set of rays emanating from a point
source at distance S2 are aggregated to single pix-
els.

2.4 Plenoptic camera
Another way to directly capture lumigraphs is with
a plenoptic camera. It creates a lumigraph which
can be used for refocussing, depth estimation and
synthesis of virtual views having a slightly displayed
camera pose.

2.4.1 Principle

The Standard Plenoptic Camera (SPC), depicted in
figure 3, consists of a main lens U and a micro-lens
array (MLA) s of smaller lenses arranged in a 2D
grid. [13] The image plane I is placed behind the
MLA at its focal length fs. So sets of parallel rays
(aka collimated light beams) entering a micro-lens
are projected onto one point of the image plane.

6

Each micro-lens projects onto a square section of
the image plane, forming a micro-image.

Figure 3: Standard Plenoptic Camera model [13]

The main lens is placed parallel to the MLA as a
distance bU greater than its focal length fU . As de-
scribed in section 2.1.2, light rays emanating from
a point source P at distance S1 ą fU will converge
behind the lens in a point at distance S2 ą fU .
Capturing a sharp image with a normal camera
would require placing an image plane I 1 at S1. Us-
ing the MLA located before S1, the plenoptic cam-
era is able to instead intercept the rays.
On the example in figure 3, the micro-images

have a resolution of 3 pixels. (The figure shows a 2D
analogy where images are one-dimensional) A chief
ray is shown for each micro-image pixel. In reality,
pixels form square regions on the image plane. Be-
tween lenses s and U , all rays whose orientation is
within a given interval, and which intersect one of
the micro-lenses si, are projected onto one pixel re-
gion uj of that micro-image. Rays emanating from
P , after passing through U , are not parallel, and so
they pass through different micro-lenses at differ-
ent angles. Each micro-lens si now makes all of the
rays passing through it in a given angle converge
onto a much smaller image pixel uj .
As shown on the figure, scene points P and P 1

at different distances get projected onto different
pixels in different micro-images. An artificial image
for a given focus can be constructed by summing
different groups of micro-image pixels in a certain
pattern. [13]

2.4.2 Availability

Plenoptic cameras provide a cheaper and more in-
tegrated way to capture light fields. Unlike a full
2D camera array, the lens system also allows for re-
focussing. However, the virtual images synthesized
from it are of much lower resolution.
In recent years the first consumer plenoptic cam-

eras have been commercialized, for by Lytro and

Raytrix. The first generation Lytro camera re-
leased in 2012 uses a 11 megapixel sensor, a MLA
with 328 ˆ 328, and produces an output image of
1 megapixel. The news Lytro Illum model released
in 2014 has a 40 megapixel sensor and produces 4
megapixel output images.
Raytrix cameras are more targeted towards in-

dustrial use. They use an interleaved MLA where
the micro-lenses have different focal lengths, in or-
der to be able to extract more accurate depth in-
formation. [12]

2.5 Depth sensor
For the purpose of view synthesis, depth estimates
will be made from the acquired images and light
fields. It can be useful to include direct depth mea-
surements.
Time of flight (TFL) laser scanners directly probe

the physical environment using a range finder, con-
sisting of a laser beam directed in different angles
in the field of view. The distance of each point is
measured using the time delay between the beam
being sent out and its reflection from the object
arriving back at a sensor attached to the scanner.
As it is impractical to generate the very short

laser pulses needed for this, range finders may in-
stead measure phase differences between the outgo-
ing and incoming beams.
Using the direction of the laser beam and the

measured distance, spherical coordinates of the
scene point are obtained, which are then converted
into cartesian coordinates and stored as a point
cloud. It does not hold connectivity information
about the object surfaces and can contain noise and
outliers. Several techniques exist to post-process
point cloud data, for example surface estimation
(meshing), registration, filtering, and others.
Other methods to measure depth include trian-

gulation laser scanners and structured light cam-
eras. RGB-D cameras also exist, which directly
capture a visible image and depth image at the
same time, with the help of infrared emitters. [14]

7

3 Scene Reconstruction
Most view synthesis techniques require information
about the 3D geometry of the scene as input, in
addition to the camera images. Depth informa-
tion can be measured directly using 3D scanning
or other auxiliary data sources, as described in the
previous chapter. However generally this is ob-
tained using photogrammetric techniques which ex-
tract depth information from the images.
This depth information is always an estimation,

based on hypothesis made about the physical scene:
Firstly, it is assumed that the objects have well-
defined boundaries. It should be possible to assign
a meaningful depth value to each pixel in an image.
Translucency, refraction, and non-lambertian sur-
face reflectance also require more advanced meth-
ods to be modeled correctly. It can be shown that
for stereoscopic methods, constant intensity1 re-
gions are the only inherently ambiguous case when
attempting to extract depth information [15].

3.1 Representations

Different representations of geometry are used for
the estimated scene geometry.

depth map An additional depth component d is
added to each pixel in the images, which in-
dicates the distance from the camera’s center
of vision to the object surface point depicted
by that pixel. Depending on the method used,
d can also be a projected depth value, for ex-
ample the result of applying a homogeneous
projection matrix to 3D coordinates. Depth
maps are a 2.5D view of the geometry contain-
ing only the part of the scene visible from one
camera. It is a view-dependent representation
relative the camera view to which it is tied.

layered depth map If there are multiple cameras
facing the same side of an object, but none
facing other sides of it, then most of the geom-
etry information missing on a single 2.5D view
is due to occlusions. A layered depth map re-
solve this by allowing multiple depth values at
each pixel, which indicate the distances of mul-
tiple surface points along that ray of sight. [16]
It can be a good compromise between multi-
ple redundant depth maps, and an incomplete
global geometry representation.

voxel space A bounded range of 3D space is di-
vided into an uniform three-dimensional lat-

1for non-monochromic images, intensity refers to color,
which is represented usually using 3 scalar values

tice of cubic voxels. Each voxel can be oc-
cupied or empty, and possibly be attributed
with a color and opacity value. The occupied
voxels approximate the volume of the recon-
structed object. Unlike depth maps, this is a
view-independent global representation. Vox-
els are easy to process algorithmically, but re-
quire a lot of memory for an acceptable reso-
lution. [17]

The voxel space can also be represented us-
ing an octree or other spatial tree, where fully
occupied or free cells need not be further sub-
divided. [18]

point cloud The 3D shape is represented only us-
ing a set of points laying on object surfaces,
given by three-dimensional coordinates. No
information on surface connectivity is stored.
This corresponds to the raw recorded data
from 3D scanners. A depth map or layered
depth map can easily be converted into a point
cloud when camera parameters are known.
However, unlike with laser scans, pixels on the
depth map do not correspond to thin rays, but
to square bundles of light rays. This informa-
tion can be included into the point cloud by
assigning a stamp size to the points, depend-
ing on the resolution of the depth maps and
the point’s depth. [19]

mesh The classical method in computer graphics
to represent surfaces in 3D is to use a set of
points called vertices, connected using edges to
form a mesh of triangular faces. This removes
the problems with loss of connectivity and low
resolution that exist for point clouds and vox-
els. But creating and modifying meshes can
be highly complex, considering that there are
many possible point arrangements and trian-
gulations which form same surface. Holes,
overlapping or too acute triangles can pose
problems. High-quality 2D projections of tex-
tured meshed surfaces can be rendered effi-
ciently using established techniques.

3.2 Cues

Since images do not contain explicit measured
depth information, several cues are used to esti-
mate scene geometry. [20]

dense correspondences For two of more views de-
picting the same part of the scene, image
points that correspond to the same 3D scene

8

point on object surfaces are put into correspon-
dence. This is done for each pixel in the im-
ages, leading to a set of dense correspondences.
[21]

Stereo matching methods can be extended to
work with more than two views of the scene as
input. The term multi-view stereo (MVS) en-
compasses scene reconstruction methods that
use stereo disparity estimation as their main
cue, but operate on multiple views in a pair-
wise manner. [22, 23]

When a multiple of rectified input views are
available with the cameras placed as regular in-
tervals along a straight line, depth can instead
by estimated using line detection on the EPI.
[24] Similar approaches for circular or arbitrary
camera movement known as image cube trajec-
tory (ICT) analysis has also been developed.
[25, 26]

sparse correspondences When the input views are
farther apart, image feature detectors such as
sift can be used. By cross-checking feature
matches over several views, reliable multi-view
correspondences can be determined. [27] They
can also be used for camera calibration.

The obtained sparse set of correspondences can
then be used to aid disparity estimation [20] as
well as EPI analysis [28].

It is also possible to start with a sparse set
of correspondences, and gradually extend it to
dense correspondences in a match, expand and
filter procedure. [29]

silhouette Another important cue for scene recon-
struction is the silhouette of objects in the im-
ages. After the silhouette of the same 3D ob-
ject has been detected in multiple images, for
each image a three-dimensional cone is formed
from the set of rays emanating from the silhou-
ette. The intersection volume of those cones
constitutes an approximation of the object’s
shape called its visual hull.

others Additional cues for depth reconstruction in-
clude motion of objects and lens defocus [30].
Also, low-level scene reconstruction can be re-
vised with higher-level cues based on reason-
ing about the scene geometry. This mimics
the way human vision involves understanding
of the scene. [31]

3.3 Stereo

Stereo methods use only two views to estimate
depth and scene geometry. The main cue is dis-
parity.
Image pixels on the two input views that corre-

spond to the same 3D scene point on object surfaces
are put into correspondence. When the cameras
are placed relatively close to each other, the scene
points are depicted at similar angles are photo-
consistent, that is, they look visually similar on
the images. To find correspondences, stereo recon-
struction methods use image comparison metrics on
small windows of the views. For example pixel-wise
metrics such as difference of squares, correlation, or
mutual information can be used. [21, 32].
Knowledge of the camera’s relative poses re-

stricts the search of corresponding pixels to the
one-dimensional epipolar line. Rectification turns
corresponding epipolar lines into same horizontal
scanlines. Then the horizontal displacement of cor-
responding points is called the disparity, and is in-
versely proportional to the depth. This horizontal
disparity estimation is analogous to human stereo-
scopic vision. [21] Without rectification, a defini-
tion of disparity must take into account the differ-
ing orientations of the epipolar lines in both images.
The set of all possible values px, y, dq, i.e. a

pixel on the reference image and a hypothetical
disparity putting it into correspondence with a
pixel from the other image, is called the disparity
space. Stereo algorithms effectively use different
methods to traverse it and find the disparity map
dpx, yq “ arg mindPR Cpx, y, dq, and convert it into
the depth map.
They generally operate using four steps, namely

computation of pixel-wise and aggregated match-
ing costs, optimization by cost minimization, and
refinement of the estimated disparity map. [21]

3.3.1 Matching cost

One of the two input images is denoted the ref-
erence image. To find the dense correspondences,
the algorithm will need to estimate the disparity d
corresponding to each reference image pixel px, yq.
A computable matching cost function Cpx, y, dq

is defined which should be minimal when d is the
correct disparity of pixel px, yq. Given rectified in-
put views, this means the pixel p1 “ px, yq P I1 is
matched to the pixel p2 “ px` d, yq P I2. The cost
function compares the intensity values of a group
of pixels in both images, centered around p1 and
p2. Different algorithms use pixel-wise color inten-
sity differences, normalized cross-correlation, mu-

9

tual information and various other metrics. [21]
When the group of pixels to compare spans a

window wpx, y, dq of px, yq values, keeping d con-
stant, correct results are produced only for fronto-
parallel surfaces, which have a constant disparity
(and depth) in this image window. To support
slanted or curved surfaces, a three-dimensional sup-
port window is instead used which also spans over
a range of disparity values. For methods based on
a pixel-wise matching cost function C0px, y, dq “
fpI1px, yq, I2px ` d, yqq, this can be expressed as a
2D or 3D convolution:

Cpx, y, zq “ wpx, y, zq˚ COpx, y, dq (4)

Generally, larger support windows increase ro-
bustness against noise and produce a smoother
depth map, but decrease accuracy at sharp edges.
Metrics which directly compare color intensity val-
ues require accurate color calibration. Correlation-
based metrics are robust against affine transforma-
tion between the intensity values, that is, a correct
depth map is still found when the intensity values
in one image are scaled and offset. The mutual-
information metric is also robust against any non-
linear transformation. [33, 34]

3.3.2 Cost minimization

To minimize the cost functions and find the esti-
mated disparity map, one can distinguish between
local and global methods.
The uniqueness constraint asserts that each pixel

corresponds to one object surface point, and hence
disparities must be estimated such that pixels p1
and p2 are put in bijective correspondence. That
is, there must not be multiple pixels p2 that corre-
spond to the same p1, and vice versa. As an excep-
tion, if an area corresponding to a range of sequen-
tial pixels p1 P I1 is occluded in I2, this may be
modeled by putting those pixels in correspondence
with the same pixel p2. Some methods instead ex-
plicitly detect and mark occlusions. [21, 35]
The constraint can be formulated using an in-

hibition area Σpx, y, dq. The function Σ assigns
to each match px, y, dq a set of forbidden matches
px1 ‰ x, y1 ‰ y, d1q which may not be true at the
same time. [35]
The ordering constraint is the requirement that

left-right relations, that is, the relative ordering of
pixels along the scanlines is preserved. Let pp1, p2q
and pq1, q2q be two pairs of corresponding pixels in
the two images I1, I2. If xpp1q ă xpq1q then the
constraint asserts that xpp2q ă xpq2q. However this
is not generally the case. [36, 21, 37]

Finally, the depth map is generally supposed to
be piecewise smooth. The algorithms must produce
a smooth depth map on object surfaces, while pre-
serving discontinuities on object edges.
Local methods treat each pixel px0, y0q in the ref-

erence image separately. A “winner-take-all” op-
timization is performed: Cpx0, y0, d0q is evaluated
over a range of hypothetical disparities d0, and the
one for which C is lowest is retained. While this
approach is the most simple, it does not satisfy the
uniqueness constraint.
Global methods formulate the entire disparity

estimation as minimization of an energy function:
[21]

Epdq “ Edatapdq ` λEsmoothpdq (5)

where d is the disparity function dpx, yq. Some
methods include additional terms, but generally
this framework is retained. This energy function
E is a computable function that attains a minimal
value when d is a good disparity map.
The data term Edata measures photo-consistency

of the supposed matches, and may be defined using
the matching cost function as

Edatapdq “
ÿ

px,yq

Cpx, y, dpx, yqq (6)

The smoothness term Esmooth measures piece-
wise smoothness of d, which can be expressed as

Esmoothpdq “
ÿ

pp,qqPN

Vtp,qupdppq, dpqqq (7)

where N is the set of pairs of adjacent pixels. Vtp,qu
is a function that serves as distance metric for the
disparities dppq and dpqq. It is defined such that
its value is low when d retains similar values over
neighboring pixels, but allows for disparity jumps
at object edges, which correspond to high frequency
variations of the pixel intensity values.
It is also possible to include terms that favor dis-

parity maps satisfying the uniqueness and ordering
constraints. [38]
A finite set of possible depth values D “

td1, d2, ¨ ¨ ¨ , dmu is defined, and as a result there
is a finite number of possible disparity map func-
tions d. Minimization becomes a labeling problem.
In general, finding the global minimum of E is NP-
hard [20]. However different approaches exist to
efficiently compute a disparity map d which ap-
proximately minimizes E. [21] One possibility is
graph-cut optimization. [39]
It is also possible to include segmentation into the

cost minimization. In this case an energy function
Epdi, ljq is minimized, assigning to each pixel both

10

a depth label di and a layer label lj . Additional en-
ergy terms are then included to differentiate layers.
[20]
Also, when sparse feature correspondences can be

included: The energy function is formulated such
that same depth (and layer) labels are forced at
matching feature pixels. The smoothness term the
ensures that the surrounding areas adapt accord-
ingly. [20]

3.3.3 Graph-cut optimization

The graph-cut algorithm is one way to approxima-
tively minimize the described global energy func-
tion. [39] It begins with an arbitrary labeling dp0q.
Now iteratively new labelings dpi`1q are computed
from dpiq. An α-β swap move may set some pixel
labels from α to β, or from β to α, but does not
modify pixels whose label is neither α nor β. A
similar algorithm using instead α expansion moves
also exists.
For any input partition Ppiq, the optimal α-β

swap, for which Epdpi`1qq is minimal, can be found
by computing a minimal cost graph cut:
Labels α and β are chosen arbitrarily. Then a

weighted graph G “ xV, Ey is constructed dynami-
cally based on α, β and the current partition Ppiq.
V. V consists of two terminal nodes called α, β,
and one node for each pixel px, yq that currently
has the label α or β. E consists of three types of
edges: t-links connect the pixel nodes to both the
terminals α and β, and n-links connect pixel nodes
corresponding to neighboring pixels.
On this graph, any cut C that separates the ter-

minals α and β severs exactly one t-link for each
pixel node. This defines a labeling dC correspond-
ing to C, which is one optimal α-β swap away from
dpiq.
Weights are associated to these edges, using the

functions Cpx, y, dq and Vtp,qupdppq, dpqqq from the
energy term expressions in 6 and 7. These weights
and the labeling dC are defined in a way that the
minimum cost cut corresponds to the optimal α-β
swap.
Based on this the full algorithm performs the fol-

lowing steps shown in figure 4.
Executions of the inner loop are called iterations,

and those of the outer loop cycles. The algorithm
stops after the first unsuccessful cycle in which it
could not further reduce Epdq. The disparity map
d converges to a labeling such that Epdq is a local
minimum, at a bounded maximal distance from the
global minimum.
It can be shown that the algorithm terminates

after OpNq cycles, with N the number of pixels in

dÐ arbitrary initial labeling
repeat

successÐ 0
for all tpα, βqu P D2 do

construct graph G using α, β, d
compute minimal cost cut C
d̂Ð dC
if Epd̂q ă Epdq then

d “ d̂
successÐ 1

end if
end for

until success = 0

Figure 4: Graph-cut optimization algorithm

the image. The graph cuts can be computed in
low-order polynomial, and in practice near-linear
time with respect to the number of nodes and edges
in the graph. Thus the entire algorithm runs in
polynomial time with respect to N . [39]
This graph-cut optimization algorithm is em-

ployed in the MPEG DERS software for disparity
estimation.

3.3.4 Dynamic programming

Another approach to minimize the global energy
function 5 in polynomial time works by processing
scanlines independently. Two corresponding scan-
lines y1 “ y2 from the two views are represented on
a 2D square matrix My.
Each cell Myrx1, x2s corresponds to the match-

ing cost of I1px1, yq in the reference image and
I2px2, yq in the other image. That is, Myrx1, x2s “
Cpx1, y, x2 ´ x1q unless another mapping for the
disparity values is used. Disparity for all the points
on the scanline y is estimated by computing the
minimum-cost path through this matrix. This
path is diagonal where the disparity remains con-
stant along the scanline, and horizontal or vertical
when the scene point is occluded in one of the two
views. Because disparity is assumed to be piecewise
smooth, the path consists of near-diagonal curves
separated by horizontal or vertical segments. So it
can be computed incrementally by looking only at
the matrix cells in a local neighborhood of the cur-
rent cell, and so the disparity of a whole scanline
can be estimated in linear time. It is described as
a form of dynamic programming because previous
results affect the progression of the algorithm.
By repeating this process for each scanline a full

disparity map d is computed in polynomial time.
However because scanline are processed indepen-
dently, inter-scanline consistency is not enforced,

11

resulting in a horizontal “streaking” artifacts on the
disparity map [33]. Also, this method is only ap-
plicable when the ordering constraint is met on the
input views.

3.3.5 Semi-global matching

Semi-global matching [33, 40, 32] resolves the lack
of inter-scanline consistency using the realization
that although matching pixels on rectified images
are located on the same horizontal scanlines, this
dynamic programming method can also cross the
image in arbitrarily oriented lines.
For a given pixel ~p of the reference image, and

a given direction vector ~r P R2, the algorithm tra-
verses the line ~p ` t~r in both images. The ma-
trix M rt, ds is considered, where the column indi-
cates the position along this line t, and and row
is a disparity d value for this pixel. So M rt, ds “
Cpt~p` t~ru, dq, where corresponding pixels with dis-
parity d are still taken with a horizontal offset.
Because dpx, yq is still piecewise smooth when

moving across that line, disparity values can be
computed by traveling through the minimum-cost
path of this matrix. The semi-global matching algo-
rithm chooses 8 directions r: four straight and four
diagonals. This computation is performed for all
pixels on the image border, so that 8 different dis-
parity estimates dip~pq get computed for each pixel.
Each of these disparity maps contains the streaking
errors along their direction ~r. The final disparity
map dp~pq is constructed by taking for each pixel
the value dip~pq whose cost Cp~p, dp~pqq was minimal.
Errors are thereby averaged out.
The semi-global matching method also defines a

global error function similar to formula 5 which in-
cluded a smoothness term, insuring the disparity
map becomes piecewise smooth. It it effectively
minimized during the minimum-cost path traversal,
through an additional term included in the recur-
sive path cost function. [33]

3.3.6 Mutual information

Semi-global matching also uses a mutual infor-
mation error metric for the computation of pixel
matching costs. As already stated it is robust
against non-linear color calibration difference be-
tween the two views. The mutual information
IpIX , IY q between two images IX and IY can be
interpreted as a measure of the certainty by which
X can be predicted knowing Y , and vice versa. For
semi-global matching, IX and IY are windows of
the image around given pixel, taken by convolution
with a gaussian kernel.

Let X and Y be a random variables which give
the intensity of a random pixel in the images IX
and IY , respectively. Let I be their range of possi-
ble intensity values, for example I “ r0, 255s. The
probability distribution P pxq is the histogram of
the image, and X is invariant of the pixel’s posi-
tions (same for Y). The joint probability distri-
bution P px, yq gives the probability that a pixel at
same coordinates in IX takes value x and in IY
value y.
The entropy of X is defined as

HpXq “ ´
ÿ

xPI
P pxq log2pP pxqq (8)

It indicates the average number of bits per pixel
needed to transmit IX over a binary channel using
an optimal binary coding. For instance the Huff-
man coding satisfies this constraint, by associating
longer binary sequence codewords to less probable
intensity values. As such entropy can be regarded
as a measure of the amount of information con-
tained in IX , in the context of signal coding.
The joint entropy between random variables X

and Y is defined as

HpX,Y q “ ´
ÿ

xPI

ÿ

yPI
P px, yq log2pP px, yqq (9)

Its interpretation is the same, for a coding that as-
signs binary sequences to the possible pairs px, yq.
If IX and IY are sent sequentially over a chan-

nel with optimal coding, HpXq ` HpY q bits are
required per pixel. If instead corresponding pixel
pairs px, yq are sent together, HpX,Y q bits are re-
quired, which is always a lower value. If there is
any function y “ fpxq that maps pixel values from
IX to the ones in IY , then P px, fpxqq gets a higher
value and all other P px, ¨q “ 0. Even when this
mapping applies only approximately, it allows for a
more efficient coding: shorter codewords can be as-
sociated to values px, yq that are more likely to come
together. Sending the images sequentially would
not incorporate any information about which val-
ues come together.
Mutual information is defined as this difference

IpX,Y q “ HpXq `HpY q ´HpX,Y q (10)

Originally developed in the context of registering
medical images [34], it it a measure of similarity be-
tween two images, that is robust against illumina-
tion or modality differences between the images. It
only requires similarity in the sense that some pairs
px, yq are more probable on corresponding pixels,
than on different pixels.
In the context of stereo matching, it provides ro-

bustness for example against different camera cali-
bration, scene illumination and noise.

12

3.4 Shape from silhouette

When cameras are placed around a 3D object, at
possibly more different view poses that do not per-
mit disparity estimation, different techniques can
be used to directly reconstruct the volumetric shape
of the object.
A cue for 3D scene reconstruction in this case is

to extract object silhouettes from the input views.
Silhouettes can be detected relatively easily us-
ing segmentation and corner detection methods.
Each silhouette provides some information about
the three-dimensional shape of a scene object. Us-
ing knowledge of the camera parameters, a cone of
rays in 3D scene space is constructed which em-
anate from the camera center and cover the object.
The intersection of these cones from different cam-
era poses produces an approximation of the object’s
shape. [41, 17]

3.4.1 Visual hull

The precision of this approximation depends on the
number of cameras. At best, the visual hull of the
object can be obtained, which in general is a super-
set of the object’s actual volume, but a subset of
its convex hull. [42]
Computing the shape of this cone intersection is

done most easily using a voxel scene representation.
Constructing a high quality mesh from the silhou-
ette cone intersections would be very complicated.
However an intermediary constructive solid geome-
try (CSG) representation can be used when the 3D
model is to be rendered using ray-tracing. [17]
The process of space carving starts with a fully

occupied slab of voxel space. Then for each view, all
voxels falling outside the silhouette cone are freed.
The resulting volume is a quantized representation
of the visual hull according to the given volumet-
ric grid. It can be further improved and converted
into a mesh by surface extraction, surface smooth-
ing and mesh complexity reduction. [30]
Several early approaches to space carving use an

octree representation of the volume. Either an oc-
tree representation of for each silhouette cone is
generated and then their intersection is computed,
or a single octree is successively refined for each
view. [43]
If the virtual camera using which the recon-

structed volume is going to be rendered is known
beforehand, one way to avoid the quantization arti-
facts is to build a view-dependent visual hull repre-
sentation, by using its image space coordinates for
the voxel grid. [41]

3.4.2 Photo hull

After a visual hull has been constructed from sil-
houette cone intersections, it can be refined by carv-
ing out inconsistent voxels. Under the assumption
of lambertian reflectance, for any voxel laying on
the object surface which is visible in at least two
views, its corresponding pixels should have approx-
imatively the same intensity. The voxel is a false
surface voxel it it protrudes from the real object
surface, and is projected onto different features in
the images. [44] If this photo-consistency test fails,
the voxel is freed, because it was not part of the
object volume. Space carving algorithms generally
operate by repeating this procedure until no incon-
sistent voxels remain. [44, 17, 45]
Visibility of the voxels in the different views

needs to be determined for this: as space carv-
ing progresses, the remaining voxels may occlude
each other in complex and changing patterns. [17]
Different methods have been developed to do this
efficiently.
The best approximation of the actual object

shape that can be obtained by testing photo-
consistency of the voxels’ projections is called the
photo hull. [23] One has

object Ă photo h. Ă visual h. Ă convex h.

3.4.3 Ordinal visibility constraint

One is to arrange the cameras such that the ordi-
nal visibility constraint is fulfilled: It requires that
there be a single near-to-far norm } ¨ } for the vox-
els which is valid for each view. [46] So for any
two voxels p, q, and for every view, the projection
of p occludes that of q only if }p} ă }q}. It is sat-
isfied whenever no scene point is contained within
the convex hull of the input camera centers. [46]
One such camera arrangement is to place all cam-
eras on a common plane, with the entire scene on
one side of it. Then } ¨ } is the point’s distance to
the plane.
With this constraint met, a voxel reconstruction

V of an object can be build using the simple algo-
rithm in figure 5. [46]
A projection of a voxel (cube) v onto an image Ii

corresponds to a set of pixels projpv, Iiq on the im-
age. If v is part of the object surface, and assuming
the object surface has a relatively constant coloring
region, then all the pixels projpvq “

Ť

i

projpv, Iiq

should have consistent coloring. λv is a measure of
this consistency.
If v is (partially) occluded, projpv, Iiq contains

fewer pixels. Because of the ordinal visibility con-

13

V Ð all voxels free
for all v P V , by increasing }v} do

project v into all views Ii
compute λv
if λv ă threshold then

set v to average pixel color
end if

end for

Figure 5: Voxel coloring algorithm with ordinal visibility con-
straint [46]

straint, it is possible to keep track of occlusions
using a binary mask attached to each image. The
masks are initialized with 0 at each pixel.
if voxel v occludes voxel v1 (in any view), then

v is necessarily visited before v1. After v was pro-
jected to a view Ii, the mask is set to 1 for all pixels
projpv, Iiq. When a new voxel v1 is projected, the
masked pixels are ignored, because it is known in
this image region v1 is occluded by v, or another
preceding.
In addition to carving out inconsistent voxels,

this method also allows to associate colors to the
voxels based on the projections projpvq.

3.4.4 Generalized voxel coloring

The ordinal visibility constraint is a severe restric-
tion on camera arrangement, and makes it impossi-
ble to construct a full 3D model of the objects from
all directions. A generalized voxel coloring algo-
rithm for the arbitrary camera poses performs the
steps shown in figure 6. [17]

V Ð all voxels occupied
repeat

all voxels consistentÐ 1
for all v P V where v is occupied do

project v into all views Ii
compute λv
if λv ă threshold then

set v to average pixel color
else

set v to free
all voxels consistentÐ 0

end if
end for

until all voxels consistent “ 1

Figure 6: Generalized voxel coloring algorithm [17]

Computing the projection pixels projpv, Iiq also
becomes harder because pixel visibility can no
longer be determined using a simple binary mask.
Several techniques have been developed to imple-

ment generalized voxel coloring efficiently. [17]
A multi-view photo-consistency measure λv

needs take into account that unlike in stereo
methods, cameras are placed further apart and a
voxel englobes a three dimensional region of space.
Abrupt color boundaries on object surfaces for in-
stance may lead to false negatives. [17]
A more recent algorithm enables voxel recon-

struction of objects with specular reflective sur-
faces. [47] Along with the voxel carving iterations,
normal directions of the object surface are esti-
mated, and used to estimate the expected coloring
given an environment map.

3.5 Epipolar plane image (EPI)

As described in section 2.2.1, for an array of cam-
eras placed in regular intervals along a straight line,
an EPI can be constructed for each scanline of their
rectified images. Each row of the EPI corresponds
to the same scanline of another camera. As ex-
plained the EPI can also be interpreted as a 2D
section of the lumigraph. [24, 48, 49, 50, 51]

Figure 7: Example of EPI [49]

An example is shown in figure 7. The shown
coordinates correspond to the two-plane light field
parametrization. The upper view shows the rec-
tified image of one of the cameras. One scanline
t “ t0 is highlighted. The bottom view the shows
the EPI for that scanline. Each row is equal to
that same scanline from cameras with different hor-
izontal positions u. The highlighted middle camera
corresponds to the upper view.
EPI images can also be constructed for non-

lateral camera motion. For example when the cam-
era moves towards the scene, that is, the camera
plane C is perpendicular to F , hyperbolic curves
occur instead in the EPI. [24] Most of the more re-
cently developed EPI-based techniques assume lat-
eral camera motion, though. There are also gen-
eralizations for rotational or arbitrary movements
[25, 26], and for non-planar image projections [52].

14

3.5.1 Observations

It can be observed that the EPI is formed entirely
of straight line segments: The same object points
are depicted, but disparities increase as the camera
position u varies. Instead of two views as in stereo,
now an entire array of views across the baseline
is available. Instead of comparing image windows
to estimate disparity, an increase of disparity can
be measured, by estimating the slope of the line
segments in the epi. This way information from all
cameras is implicitly taken into account. The slope
is directly proportional to the depth of the scene
point.
With a two-dimensional camera array, different

EPIs for one same scanline, but different camera
heights v can also be constructed, as well as vertical
EPIs where instead the t axis is fixed in the images
and the camera moves along the v axis. This can be
used to cross-check and improve the result of depth
estimation.
Oblique line segments form in the EPI under the

assumption of lambertian surface reflection: Ob-
ject surface points need to reflect light of the same
color in all directions. One oblique line segment
represents the same scene points seem from differ-
ent angles. When surfaces have specular reflection,
color gradients occur in the line segments, as can
for instance be observed on the righthand side in
figure 7. This complicates line detection, but also
represents additional information about the object.
Occlusions are visible in the EPI in the same way

they are for the camera images. For any line of sight
a nearer object can never be occluded by a farther
object. For EPI analysis this means that a line seg-
ment with lower slope can never be interrupted by
one with higher slope. This is called the occlusion
constraint. Also, line segments in EPIs always have
a positive slope.

3.5.2 Line detection

The problem of EPI-based depth estimation is to
detect line segments as accurately as possible, by
exploiting the mentioned constraints and redun-
dancies.
As the camera moves along u, complex occlusion

patterns can occur and hence the lines on the EPI
line segments can be interrupted several times and
by several layers of occlusion. While not visible
everywhere, the underlying lines always cross the
entire height of the EPI. But a 1D sweep through
the EPI is not sufficient to find all line segments
and associate depth to all scene points.
EPI analysis algorithms generally proceed by

first locally estimating the most likely slope for each
point ps, uq in a given EPI. Then results are inte-
grated using other EPIs depicting the same scene
points [49] or the same EPI at different scales [50],
yielding a single depth map for each view.
One way to detect lines segments in a given EPI

is via Hough transform [48]: Lines in the EPI are
parameterized using two variables, a slope m (or
an angle) and and offset p. So the line space pm, pq
constitutes a dual space to the EPI space ps, uq.
Each element pm, pq is set to a consistency mea-
sure of that hypothetical line in the EPI. Then for
each ps, uq, the pencil of possible lines (with positive
slope) passing through that point corresponds to a
1D section in line space. Along that curve, the ele-
ment with maximum consistency value is searched,
and its slope is attributed to ps, uq.
Another is to use a structure tensor J [49]. J is a

2ˆ2 matrix formed for a given EPI, point ps, uq and
window function wp∆s,∆uq. One of its eigenvec-
tors corresponds to the direction that is maximally
aligned with the gradient within the window, which
is an estimate of the line direction. The window w
can be set to a Gaussian kernel. The coherence
of the structure tensor also constitutes a reliability
measure for this estimated direction. [49]
By discretizing the depth into a finite set of

possible depth labels di, local line detection for a
given EPI, can be expressed using any cost func-
tion Cps, u, diq which is minimized by comparing
its value for all labels di. [50]
Each pixel in the EPI corresponds to a scene

point, and to a pixel in (at least) one image. Instead
of relying only on the EPI for line detection, using
image feature detectors such as sift in the views is
possible. With the method used in [28], lines are
instead fitted through EPI pixels attributed with
matching features.

3.5.3 Fine-to-coarse method

The method described in [50] employs a fine-to-
coarse methodology to get reliable depth estimates,
still on a single EPI. The method starts with the
original (“fine”) EPI.
As a pre-processing step prior to local line detec-

tion, an edge confidence is used to sort out pixels
ps, uq of the epi that seem promising for depth esti-
mation. It measures the difference of ps, uq and its
horizontal neighbors ps1, uq, where s1 varies in a 1D
small window centered at s. The sum of squares is
thresholded, and pixels where it is too large are dis-
carded from further processing. This removes most
of the pixels corresponding to homogeneous image
regions, that is, where high-frequency variation is

15

low.
For the remaining pixels ps, uq, depth is esti-

mated by minimizing a cost function with a finite
set of possible depth labels. A depth confidence
measure is also calculated for each pixel ps, uq, and
pixels whose reliability is deemed too low are dis-
carded. This include pixels with strongly view de-
pendent appearance, typically due to specular re-
flectance.
The now remaining pixels form a sparse set of line

segment tuples l “ xd, s, u, r̄y. d is the estimated
depth, and r̄ the mean radiance, that is, the mean
intensity value along the line, with some additional
filtering.
In a depth propagation step, these line segments

are then extended along the line’s direction to the
free pixels of the EPI, without overwriting existing
depth estimates and while respecting the occlusion
constraint. (Line segments with greater slopes are
not overwritten.)
These depth estimates are considered reliable,

but parts of the EPI still remain free due to either
insufficient edge confidence or depth confidence. In
order to get a full depth map, the entire EPI is now
down-sampled to half its size, and the whole pro-
cess is repeated. The algorithm becomes sensitive
to lower frequency variations in the image. The
existing depth estimates are used only as bounds
for the possible depth estimated on the lower reso-
lution EPI. This fine-to-coarse multi-scale scheme
is repeated iteratively. Finally the depth estimates
are combined, such that lower resolution estimates
are used to fill in holes from higher resolution esti-
mates.

3.5.4 Consistent labeling

Another approach to compute a consistent depth
map respecting the occlusion constrained is de-
scribed in [49]. This is still in the context of a
single EPI.
Again a finite set of depth labels di is used, but

the depth map estimation is formulated as a energy
function minimization problem. A binary indicator
function bi : ps, uq ÞÑ t0, 1u is defined for each depth
label di. It takes the value 1 if and only of di is the
depth estimate for ps, uq. b “ pb1, b2, ¨ ¨ ¨ , bnq is the
vector of indicator functions.
The global energy function is defined as

Epbq “ Rpbq `
n

ÿ

i“1

ÿ

ps,uq

Cps, u, diqbips, yq (11)

The second term uses the local line detection
cost function Cps, u, diq, multiplied by the binary

indicator, meaning that after global minimization
only one depth di is selected per pixel. For any ui
which assigns 1 to multiple depth hypothesis, the
cost function would only increase.
The first term Rpuq is called the regularizer,

which insures that the occlusion constraint is re-
spected. It is constructed based on a penalty func-
tion epdi, dj , ~rq which assigns costs to transitions
from depth label di to dj in direction ~r.

3.5.5 Global integration

These methods operate on a single EPI, and return
a , that is, a depth value for each EPI pixel ps, uq.
The next step is to integrate all of the one single
depth map per camera view.
In the case of a 1D camera array there is one per

scanline. A trivial method to create depth maps
consists of a remapping of the pixels. [28] For
2D camera arrays, multiple horizontal and vertical
EPIs can be constructed for different and for same
scanlines. This allows for global integration meth-
ods that further refine consistency.
The method described in [49] uses an energy min-

imization scheme for this, during which piecewise
smoothness of the resulting depth maps is encour-
aged, allowing for discontinuities at image edges.

3.5.6 Redundancy and encoding

As mentioned in section 2.3.1, the regular structure
of EPIs is a result of a light field redundancy that
occurs with lambertian reflectance. Rays emitted
from an object point have the same intensity in all
directions.
So the EPIs representation can be exploited to

compress light fields. As described before the it can
be approximated as a set of line segment tuples l “
xd, s, u, r̄y. This constitutes a sparse representation
of the light field section, where this redundancy is
removed.
The difference between the original EPI, and the

one reconstructed from the sparse representation,
called the Delta-EPI in [50], contains effectively
only information about view-dependent effects such
as specularities (and about errors in the slope es-
timations). This Delta-EPI is has low entropy and
can be compressed efficiently.
EPIs is also suitable for sparse encoding. In [11],

the EPI is subdivided into small 8ˆ 8 pixel blocks.
Similarly to the discrete cosine transform employed
by JPEG, the blocks can be compressed by separat-
ing different frequency components. It is separated
into a set of Gabor atoms.

16

The Gabor function is a Gaussian window on a
sine wave. In 2D, it is parameterized by a tuple
xθ, f, φ, u, σy consisting of the direction θ P r0, 2πs,
frequency f , phase φ, and position u and window
size σ. Convolving an image with a Gabor func-
tion extracts components of a certain frequency and
direction, and only at a certain position. This is
called a Gabor filter.
The image can be reconstructed as a linear com-

bination of several Gabor functions with different
intensities, then called Gabor atoms. In [11] it is
shown that keeping only a small number of Gabor
atoms with highest intensities is sufficient to get a
good reconstruction of the EPI block. This can be
applied for compressive sensing of the light field,
using a sensor system that only records a sparse
set of Gabor atoms.

3.6 MPEG Depth Estimation
Reference Software

The Depth Estimation Reference Software (DERS)
software package is an implementation of depth
estimation. It is developed and used by MPEG.
Along with the view synthesis software vsrs is was
initially developed at Nagoya University in 2008,
and is now being maintained by the MPEG-FTV
group.
The software uses stereo methods, and takes three

views as input: a left, center, and a right image
pIL, IC , IRq. The cameras are assumed to be ar-
ranged approximatively on a straight line, with a
relatively low baseline. The center camera needs
to be equidistance from the left and right cameras.
The output is one depth map DC , relative to the
center camera. Also, extrinsic and intrinsic param-
eters for the three cameras are taken as input, in
the form of pairs of 4ˆ 4 transformation matrices.

3.6.1 Algorithm

The initial version of DERS implements the follow-
ing algorithm: [53]
For each pixel in the center image px, yq P IC , a

disparity d is estimated. The pixel px, yq P IC has
disparity d when it corresponds to px ` d, yq P IL
and px ´ d, yq P IR. Error functions ELpx, y, dq
and ERpx, y, dq are defined as the absolute inten-
sity difference between those hypothetical corre-
spondences.
Esimpx, y, dq “ mintELpx, y, dq, ERpx, y, dqu is

defined as their minimum. It is a disparity cost
function robust against occlusion in one of the two
views.

A global error function E is defined as
Epx, y, dq “ Esimpx, y, dq`λEregpx, y, dq. The term
λEreg is added to encourage piecewise smoothness.
A disparity map which minimizes E is now com-
puted using the graph-cut algorithm described be-
fore in section 3.3.3.
This disparity map is then directly converted into

the depth map DC . Because d takes only a num-
ber of discrete values (256 in this version), and the
depth is inversely proportional to it, the discretiza-
tion can be significant.

3.6.2 Development

Several improvements to the basic algorithm have
been added to DERS.
A segmentation mode and a semi-automatic

mode were added. The segmentation mode per-
forms segmentation into different layers by color
in addition to depth estimation. Semi-automatic
mode takes auxiliary data as input to improve the
results. Different matching cost functions have
been implemented which compare pixels on in 2D
windows. A temporal regularization step was added
for use with video frames, which distinguishes mov-
ing and static elements. [54]

17

4 View Synthesis

The next stage of the FTV pipeline is view synthe-
sis, the rendering of views from a virtual camera.
This virtual camera can have arbitrary position,
orientation, field of view, and possible focussing,
within a limited range. A goal of free navigation
(FN) is to get a large and uninterrupted range, so
as to create a VR system where the user can freely
move through a scene.
In general a camera image varies smoothly when

camera’s parameters change. That is, the optical
flow is continuous, with the exception of disconti-
nuities and occlusions at the boundaries of scene
objects. So except for very small movements, scene
geometry information is an essential ingredient for
view synthesis.
In general one distinguishes between IBR and

model-based rendering (MBR). IBR methods inter-
polate the light field, without knowledge of the
scene geometry. This requires a lot of input data,
and synthesis is generally possible only for a small
range of motion. However the accuracy and ef-
ficiency is completely independent of the geomet-
ric complexity of the scene. At the other extreme,
MBR methods render the scene based on the recon-
structed geometry, typically using a textured mesh
and classical computer graphics techniques. This
poses no restriction on the virtual camera, but re-
quires accurate modeling of the geometry. Hybrid
techniques combine elements from both techniques.
[55, 30, 56, 57]

4.1 IBR techniques

As stated IBR techniques take only a sample of the
light field as input, typically acquired using cam-
era arrays or plenoptic cameras. As shown in sec-
tion 2.3.2 a (virtual) pin-hole camera corresponds
to a 2D section of the plenoptic function f . Light
field rendering methods use the sparse sample of
f known from the input views to estimate intensi-
ties of new rays with different positions and orien-
tations. This interpolation is done in 5D (or 4D)
space: there is no continuity between light rays that
just intersect in the 3D space.

4.1.1 Lumigraph interpolation

An example of light field interpolation on a lu-
migraph (two-plane light field parameterization) is
shown on figure 8. The figure shows a 2D equiva-
lent.
A fifth, virtual camera with 5 pixel image is

shown on the bottom, with center u1, and one of

Figure 8: Light field interpolation

its virtual rays is highlighted. It needs to be inter-
polated from the known rays from the lumigraph.
Four rays that have similar positions and orienta-
tions are highlighted. An intensity value for the
virtual ray can be interpolated as a weighted mean
of those.
On the figure the lumigraph is discretized with

4 camera poses ui, each of which sample 10 pix-
els sj . The shown rays pui, sjq in the lumigraph
actually correspond to a beam of light rays in the
real light field. In the 3D case, each grid point [9]
xu,v,s,t corresponds to a beam of light. To model
this a base function Bu,v,s,t is associated to each
grid point such that

fpu1, v1, s1, t1q “
ÿ

pu,v,s,tq

xu,v,s,tBu,v,s,tpu
1, v1, s1, t1q

This allows any ray pu1, v1, s1, t1q to be estimated
using the existing grid points xu,v,s,t. Geometri-
cally, the intersections between the virtual ray with
the camera plane C and focal plane F are taken, a
kernel is placed the planes C and F at the intersec-
tion points, which defines the weights at which rays
are taken. Doing this on both planes constitutes a
4D ray filter. [8] A simple box basis would be a
constant function, which always takes the value 1
when pu, v, s, tq are closest to pu1, v1, s1, t1q. It pro-
duces discontinuities in the virtual image. Better
results are obtained using a quadralinear basis: The
4 neighboring points on F and C are taken, and the
ray is interpolated against 16 known rays (aka grid
points). [9]

4.1.2 Depth-based lumigraph interpolation

The described method assumes that the entire ob-
ject surface is located on the focal plane F . It leads
to incorrect results if this is not the case, even if the
input views are pin-hole camera images.

18

When a Gaussian or similar kernel is used as 4D
ray filter, a blurring defocus effect occurs in the vir-
tual image, which simulates that from a lens cam-
era. The size of the kernel used on the camera
plane C corresponds to a virtual aperture size. A
wider kernel creates more blur, reduces the range of
motion, but improves the precision of the interpo-
lation. (A greater number of different virtual poses
become possible) [58]
The goal is to interpolate between rays that em-

anate from the object surface. Knowing its loca-
tion, it is possible to choose more appropriate grid
points by intersecting the object surface plane in-
stead of the focal plane. This is shown on figure 9.
Instead of a single surface plane, it is also possible
to take a non-flat surface which approximates the
actual object’s surface. [58]

Figure 9: Light field interpolation (a) without, (b) with depth
correction [9]

4.1.3 Plane sweeping

Another simple method for view synthesis without
geometry information is plane sweeping. [59, 51].
The main observation the rays pointing out of cor-
responding pixels on different input views and also
of the virtual view (when placed in the 3D space),
will intersect and because of this the pixels will have
the same color.
Multiple planes Dj are placed in 3D space par-

allel to the image plane of the virtual camera, as
depicted in figure 10. Now each view Ii is repro-
jected onto each plane Dj , forming a set of trans-
formed images Ipi,jq. Reprojection means that for
each pixel in Ii, rays are extended and the pixel
is mapped into the ray’s intersection with Dj . On
the figure the set of rays emanating from the same
feature (the soccer player’s head) is shown. They
intersect on one of the depth planes Dz, that is, the
one where the feature is located in 3D space. There-
fore all the projections, @i, Ipi,zq have the same pixel
value at that pixel.

88 View Interpolation

Figure 6.5: Principle of plane sweeping. The space before the virtual camera Cv is discretized
in planes. For every depth D j, every pixel of the virtual view is deprojected on this plane and
projected back onto every input camera C1 �C6. Using these color values, a cost error e can be
calculated, from which the optimal depth for that virtual pixel can be determined.

Figure 10: Plane sweeping [51]

For view synthesis, the value of each pixel in the
virtual image pv P Iv needs to be determined. A
ray is extended from Iv, and intersected which each
depth plane Dj . Let p1j be this intersection point.
For each depth plane Dj , the variance of Ipi,jqrp1js
for the different images i is computed.2 It should
be minimal at the correct Dj because there the rays
from the real images intersect.
Therefore pv is assigned the mean value of

Ipi,j0qrp
1
j0
s, where j0 is the index of the depth plane

for which the variance was minimal. At a side prod-
uct, the depth j0 was also estimated for pv.
The method can be related to stereo techniques,

light field rendering and space carving, as it implic-
itly does similar calculations. [59] It can be im-
proved when the depth is known (to some degree),
by eliminating some depth hypothesis j beforehand.

4.2 DIBR techniques

Depth image-based rendering (DIBR) refers to
techniques that are mostly IBR, but require depth
maps for each view as additional input data.
When the relative camera poses are known, dense

correspondences can be directly derived from the
depth maps. The 2D vector field which associates
to each pixel in ~p1 P I1 a vector pointing to the
coordinates of the corresponding pixel in ~p2 P I2 is
also called the optical flow F1,2 : p1 ÞÑ p2. With
pin-hole cameras, it can be computed using matrix
multiplication. That is p2 “ M1,2p1, where M1,2

is a 3 ˆ 3 homogeneous 2D transformation matrix
derived from the relative camera poses of views I1
and I2.

2The brackets indicate that the pixel p1
j is taken from the

transformed image Ipi,jq.

19

If dense correspondences are known, but the pix-
els depths are not (for example as a result of dispar-
ity estimation without precise knowledge of camera
poses), the information is also called implicit geom-
etry.

4.2.1 Correspondence interpolation

The optical flow F1,2 can be interpolated to that
F1,v which would correspond to a virtual camera
Iv placed in-between I1 and I2. When only implicit
geometry is available, the simplest approach is by
linear interpolation F1,v “ kF1,2 with k P r0, 1s.
When the difference }C1 ´ C2} between the two
camera centers is small, this approximates the op-
tical flow of a camera placed at C1 ` kC2. [60]
If Cv is not between C1 and C2 in a straight line,

then this interpolation would alter image shapes,
because corresponding image pixels also no not
move in a straight line when Cv varies from C1 to
C2. It can be improved by applying a transforma-
tion to I1 before the morphing step, and the inverse
transformation on Iv afterwards. [?]
When depth maps are known, the accurate opti-

cal flow can be computed by back-projecting each
p1 into scene space and then reprojecting it on pv.
That is, the point cloud is rendered. Errors in the
depth map can also be alleviated by linearly inter-
polating scene point positions instead. [61]

4.2.2 Morphing

The virtual image Iv is now generated using a real
image I1 and an estimated optical flow F1,v. This
is called image morphing or warping. The basic
technique is to copy the intensity of each pixel p1 P
I1 to the corresponding pv “ F1,vpp1q in the new
image.
The transformation does not preserve the regular

pixel grid: M1,2p1 generally does not take integer
coordinates, so pv is not a single pixel on the im-
age Iv. When depths are known, one solution is
to use a splatting kernel, whose size is adapted to
the depth. However it does not handle excessive
stretching. [52]
A pixel p1 in the image actually corresponds to a

square region, which maps to a quadrilateral for pv
in Iv. So another approach is to instead transform
the lattice points between pixels p1, and fill in the
quadrilateral in Iv. [60] This can be implemented
efficiently using texture mapping.
Because the optical flow is constant for fronto-

parallel surfaces, it can be optimized by moving
patches in the image together. In [60] a quadtree
decomposition of the images is employed for this.

Due to occlusions and camera bounds, the opti-
cal flow is not a one-to-one mapping: M1,2p1 may
fall outside the range of I2. If the scene point de-
picted by p1 is occluded in I2, then p2 falls in the
same position as pixels from the occluding surface.
The same is true with the interpolated F1,v, and so
holes and overlaps will occur. Back-to-front order-
ing needs to be respected when rendering Iv, and
remaining holes need to be filled.
Since at least two views I1 and I2 are available,

results are improved by computing two virtual im-
ages I1v , I2v using F1,v and F2,v, and then combining
them using image blending : A (weighted) mean of
the pixel intensities is taken, Iv “ kI1v ` p1´ kqI

2
v .

For holes in I1v or I2v , only one of the values is taken.
[61] In practice this fills in most larger holes due to
occlusion, so that inpainting algorithms can be used
for remaining holes. [62]
In [63] an image interpolation technique based

on human visual perception is described. By fo-
cussing on correct correspondence of edges, homo-
geneous regions and coherent motion instead of on
pixel-wise correspondence, perceived visual quality
is improved.

4.3 MPEG View Synthesis Reference
Software

The View Synthesis Reference Software (VSRS)
software package implements an algorithm based on
image morphing. Like its counterpart the DERS, it
is designed for use with a set of linearly displaced
views facing in the same direction, with a relatively
low baseline.
The first versions of VSRS, originally called

ViewSynthesis, were developed at Nagoya Univer-
sity in 2008. It is programmed in C++, and uses
the OpenCV library. It is used by MPEG as de-
facto standard method for view synthesis, and new
algorithms are evaluated by comparing the quality
of their output to that of VSRS. It has been ex-
tensively tested for linear and arc camera arrange-
ments. [64]
The synthesized virtual images are compared us-

ing the peak signal-to-noise ratio (PSNR).

4.3.1 Input data

The synthesis algorithm takes the following data as
input:

• left-side camera image IL

• left-side camera depth map DL

• parameters of left-side camera

20

• right-side camera image IR

• right-side camera depth map DR

• parameters of right-side camera

• parameters of virtual camera

Camera parameters are expressed in the form of two
4ˆ 4 matrices for the extrinsic (pose) and intrinsic
(projection) transformation.
The output is the synthesized virtual image Iv.

4.3.2 Algorithm

In VSRS version 2.0, the view synthesis algorithm
proceeds according to the following steps: [62, 65]

1. First, the depth maps are morphed into the vir-
tual view. Like with image morphing described
before, pixels are moved to new coordinates,
without changing their values.
For the case where images are rectified and the
three cameras are on the horizontal plane, mor-
phing only displaces pixels on horizontal scan-
lines. Otherwise 3D reprojection is used. At
first the left- and right-side depth maps are
mapped independently into the target view.
Small holes are fixed using a median filter. The
resulting virtual image depth maps are here
denoted DL

v and DR
v .

2. Now using texture mapping, the left-side im-
age IL is morphed into DL

v yielding ILv . And
the right-side image IR is morphed into DR

v

yielding IRv .
The two resulting images ILv and IRv have dif-
ferent occlusions. Using the previously gen-
erated depth maps (instead of the input depth
maps and 3D transformations) takes advantage
of the applied median filter.

3. Holes in ILv are identified by looking at miss-
ing pixels in DL

v . Then they are then filled by
copying over pixels from IRv . The same is done
in the other direction.

4. Now ILv and IRv are blended together. The
weighted mean value of all pixels is computed
with

Iv “
bR

bL ` bR
ILv `

bL
bL ` bR

IRv

where bL and bR are the distances of the virtual
camera position to the left-side and right-side
camera.

5. Remaining holes in Iv are filled in using an
inpainting algorithm from OpenCV.

4.3.3 Extensions

Since version 2.0, depth maps can be morphed us-
ing 3D reprojection, instead of only horizontal dis-
placement.
Version 2.1 adds a mode for which blending is

disabled and replaced with a nearest-neighbor ap-
proach. It simply takes only the image (ILv or IRv)
from the camera which is closer to the virtual po-
sition. [65]
For version 3.0 several improvements are added.

One is an additional blending method, which op-
erates per-pixel and always chooses the pixel from
the view ILv or IRv which is, according to DL

v or
DR

v , closer to the virtual camera position. This
adds some robustness against occlusion. [66]
In version 4.0 the depth maps are extended from

8 to 16 bit, because 256 possible depth labels
have proven insufficient for circular camera arrange-
ments. [64]

21

References
[1] C.-C. Lee, A. Tabatabai, and K. Tashiro, “Free viewpoint video (fvv) survey and future research

direction,” APSIPA Transactions on Signal and Information Processing, vol. 4, October 2015.

[2] “Call for evidence on free-viewpoint television: Super-multiview and free navigation,” tech. rep.,
MPEG, October 2015.

[3] G. Lafruit, M. Domański, K. Wegner, T. Grajek, T. Senoh, J. Jung, P. T. Kovács, P. Goorts,
L. Jorissen, A. Munteanu, B. Ceulemans, P. Carballeira, S. García, and M. Tanimoto, “New visual
coding exploration in mpeg: Super-multiview and free navigation in free viewpoint tv,” 2016.

[4] G. Lafruit, K. Wegner, T. Grajek, T. Senoh, K. P. Tamás, P. Goorts, L. Jorissen, B. Ceulemans,
P. C. Lopez, S. G. Lobo, Q. Wang, J. Jung, and M. Tanimoto, “Ftv software framework,” tech. rep.,
MPEG, July 2015.

[5] M. Tanimoto, “Proposal of new study for mpeg-ftv,” tech. rep., MPEG, October 2015.

[6] H.-Y. Shum and L.-W. He, “Rendering with concentric mosaics,” Proc. SIGGRAPH, 1999.

[7] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” Compu-
tational Models of Visual Processing, 1991.

[8] M. Levoy and P. Hanrahan, “Light field rendering,” ACM SIGGRAPH, July 1996.

[9] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” SIGGRAPH ’96
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, 1996.

[10] T. Fujii, T. Kimoto, and M. Tanimoto, “Ray space coding for 3d visual communication,” Proc.
Picture Coding Symposium, vol. 2, pp. 447–451, March 1996.

[11] Q. Yao, K. Takahashi, and T. Fujii, “Compressed sensing of ray space for free viewpoint image (fvi)
generation,” ITE Transactions on Media Technology and Applications, vol. 2, no. 1, pp. 23–32, 2014.

[12] D. Doyen, A. Schubert, L. Blondé, and R. Doré, “Light field uses cases and workflows,” tech. rep.,
MPEG, February 2016.

[13] C. Hahne, A. Aggoun, S. Haxha, V. Velisavljevic, and J. C. J. Fernández, “Light field geometry of
a standard plenoptic camera,” Opt Express, vol. 22, pp. 26659–73, Nov 2014.

[14] M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, C. Loop,
C. Theobalt, and M. Stamminger, “Real-time non-rigid reconstruction using an rgb-d camera,” ACM
Transactions on Graphics, 2014.

[15] S. Baker, T. Sim, and T. Kanade, “A characterization of inherent stereo ambiguities,” 8th Interna-
tional Conference on Computer Vision, July 2001.

[16] J. Shade, S. Gortler, L. wei He, and R. Szeliskiz, “Layered depth images,” Computer Graphics
(SIGGRAPH’98) Proceedings, July 1998.

[17] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer, “A survey of methods for volumetric
scene reconstruction from photographs,” International Workshop on Volume Graphics, June 2001.

[18] M. Potmesil, “Generating octree models of 3d objects from their silhouettes in a sequence of images,”
Computer Vision, Graphics, and Image Processing, vol. 40, pp. 1–29, 1987.

[19] C.-F. Chang, G. Bishop, and A. Lastra, “Ldi tree: A hierarchical representation for image-based
rendering,” SIGGRAPH, 1999.

[20] J.-Y. Guillemaut and A. Hilton, “Joint multi-layer segmentation and reconstruction for free-
viewpoint video applications,” International Journal of Computer Vision, 2011.

22

[21] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence
algorithms,” International Journal of Computer Vision, vol. 47, pp. 7–42, April 2002.

[22] Y. Furukawa, “Multi-view stereo: A tutorial,” Foundations and Trends® in Computer Graphics and
Vision, vol. 9, no. 1-2, pp. 1–148, 2015.

[23] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison and evaluation of
multi-view stereo reconstruction algorithms,” CVPR, vol. 1, pp. 519–526, 2006.

[24] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane image analysis: An approach to
determining structure from motion,” International Journal of Computer Vision, vol. 1, 1987.

[25] I. Feldmann, P. Eisert, and P. Kauff, “Extension of epipolar image analysis to circular camera
movements,” Proc. International Conference on Image Processing, pp. 697–700, 2003.

[26] I. Feldmann, P. Eisert, and P. Kauff, “Towards arbitrary camera movements for image cube trajec-
tory analysis,” Proc. International Conference on Image Processing, 2005.

[27] P. Goorts, S. Maesen, Y. Liu, M. Dumont, P. Bekaert, and G. Lafruit, “Self-calibration of large scale
camera networks,” 2014.

[28] L. Jorissen, P. Goorts, S. Rogmans, G. Lafruit, and P. Bekaert, “Multi-camera epipolar plane image
feature detection for robust view synthesis,” tech. rep., 2015.

[29] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view stereopsis,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, pp. 1362–1376, August 2010.

[30] A. Smolic, “3d video and free viewpoint video - from capture to display,” Pattern Recognition, vol. 44,
pp. 1958–1968, 2011.

[31] S. Hadfield and R. Bowden, “Exploiting high level scene cues in stereo reconstruction,” ICCV,
pp. 783–791, 2015.

[32] Z. Moratto, “Semi-global matching,” September 2013.

[33] H. Hirschmüller, “Stereo processing by semiglobal matching and mutual information,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 30, February 2008.

[34] P. Viola and W. M. W. III, “Alignment by maximization of mutual information,” International
Journal of Computer Vision, vol. 24, no. 2, 1997.

[35] C. L. Zitnick and T. Kanade, “A cooperative algorithm for stereo matching and occlusion detection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, July 2000.

[36] A. L. Yuille and T. Poggio, “A generalized ordering constrains for stereo correspondence,” A.I. Memo
777, AI Lab, MIT, 1984.

[37] C. Verleysen, 3D estimation and view synthesis in wide-baseline stereo. PhD thesis, Université
Catholique de Louvain, École Polytechnique de Louvain, ICTEAM Institute, November 2015.

[38] G. Pajares, P. J. Herrera, and J. M. de la Cruz, “Combining stereovision matching constraints for
solving the correspondence problem,” Advances in Theory and Applications of Stereo Vision, 2011.

[39] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” PAMI,
vol. 23, no. 11, pp. 1222–1239, 2001.

[40] H. Hirschmüller, “Semi-global matching - motivation, developments and applications,” Photogram-
metric Week, 2011.

[41] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan, “Image-based visual hulls,” in
SIGGRAPH ’00 Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, 2000.

23

[42] A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 16, February 1994.

[43] R. Szeliski, “Rapid octree construction from image sequences,” CVGIP: Image Understanding,
vol. 58, pp. 23–32, July 1993.

[44] T. Fromherz and M. Bichsel, “Shape from multiple cues: Integrating local brightness information,”
Fourth International Conference for Young Computer Scientist, ICYCS, pp. 855–862, 1995.

[45] G. Slabaugh, R. Schafer, and M. Hans, “Image-based photo hulls,” in First International Symposium
on 3D Data Processing Visualization and Transmission, 2002. Proceedings, 2002.

[46] S. M. Seitz and C. R. Dyer, “Photorealistic scene reconstruction by voxel coloring,” Computer Vision
and Pattern Recognition Conference, 1997.

[47] C. Godard, P. Hedman, W. Li, and G. J. Brostow, “Multi-view reconstruction of highly specular
surfaces in uncontrolled environments,” International Conference on 3D Vision, 2015.

[48] T. Yasuno and T. Hamano, “Three-dimensional reconstruction using homocentric spherical spa-
tiotemporal image analysis,” Journal of Visual Communication and Image Representation, vol. 2,
pp. 365–372, December 1991.

[49] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of 4d light fields,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2012.

[50] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross, “Scene reconstruction from high
spatio-angular resolution light fields,” ACM Transactions on Graphics, Proceedings of Siggraph,
vol. 32, no. 4, 2013.

[51] P. Goorts, Real-time, Adaptive Plane Sweeping for Free Viewpoint Navigation in Soccer Scenes.
PhD thesis, Hasselt University, Transnationale Universiteit Limburg, 2014.

[52] L. McMillan and G. Bishop, “Plenoptic modeling: An image-based rendering system,” Proceedings
of SIGGRAPH ’95, August 1995.

[53] M. Tanimoto, T. Fujii, and K. Suzuki, “Multi-view depth map of rena and akko kayo,” tech. rep.,
MPEG, October 2007.

[54] “Report on experimental framework for 3d video coding,” tech. rep., MPEG, October 2010.

[55] H.-Y. Shum and S. B. Kang, “A review of image-based rendering techniques,” tech. rep., Microsoft
Research, 2000.

[56] M. Zwicker, M. H. Gross, and H. Pfister, “A survey and classification of real time rendering methods,”
tech. rep., Eidgenössische Technische Hochschule Zürich, 1999.

[57] S. B. Kang, R. Szeliski, and P. Anandan, “The geometry-image representation tradeoff for rendering,”
International Conference on Image Processing, September 2000.

[58] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” SIGGRAPH
’00, 2000.

[59] R. Yang, G. Welch, and G. Bishop, “Real-time consensus-based scene reconstruction using commod-
ity graphics hardware,” 2002.

[60] S. E. Chen and L. Williams, “View interpolation for image synthesis,” SIGGRAPH’93 Proceedings,
July 1993.

[61] C. Lipski, F. Klose, and M. Magnor, “Correspondence and depth-image based rendering,” IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2014.

24

[62] M. Tanimoto, T. Fujii, and K. Suzuki, “View synthesis algorithm in view synthesis reference software
2.0 (vsrs2.0),” February 2009.

[63] T. Stich, C. Linz, C. Wallraven, D. Cunningham, and M. Magnor, “Perception-motivated interpo-
lation of image sequences,” ACM Transactions on Applied Perception, vol. 8, pp. 1–25, February
2011.

[64] A. K. Wegner, O. Stankiewicz, M. Tanimoto, and M. Domański, “Enhanced view synthesis reference
software (vsrs) for free-viewpoint television,” tech. rep., MPEG, October 2013.

[65] M. Tanimoto, T. Fujii, and K. Suzuki, “View synthesis method without blending,” tech. rep., MPEG,
February 2009.

[66] K. Wegner, O. Stankiewicz, and M. Domański, “Depth based view blending in view synthesis refer-
ence software (vsrs),” tech. rep., ISO MPEG, October 2015.

25

	Introduction
	Acquisition
	Camera
	Pin-hole camera
	Lens camera

	Epipolar geometry
	Epipolar plane image

	Light field
	Redundancies
	Parameterization

	Plenoptic camera
	Principle
	Availability

	Depth sensor

	Scene Reconstruction
	Representations
	Cues
	Stereo
	Matching cost
	Cost minimization
	Graph-cut optimization
	Dynamic programming
	Semi-global matching
	Mutual information

	Shape from silhouette
	Visual hull
	Photo hull
	Ordinal visibility constraint
	Generalized voxel coloring

	epi
	Observations
	Line detection
	Fine-to-coarse method
	Consistent labeling
	Global integration
	Redundancy and encoding

	MPEG ders
	Algorithm
	Development

	View Synthesis
	ibr techniques
	Lumigraph interpolation
	Depth-based lumigraph interpolation
	Plane sweeping

	dibr techniques
	Correspondence interpolation
	Morphing

	MPEG vsrs
	Input data
	Algorithm
	Extensions

	References

